Patents by Inventor Henry E. Young

Henry E. Young has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10160948
    Abstract: The present invention relates to pluripotent stem cells, particularly to pluripotent embryonic-like stem cells. The invention further relates to methods of purifying pluripotent embryonic-like stem cells and to compositions, cultures and clones thereof. The present invention also relates to a method of transplanting the pluripotent stem cells of the present invention in a mammalian host, such as human, comprising introducing the stem cells, into the host. The invention further relates to methods of in vivo administration of a protein or gene of interest comprising transfecting a pluripotent stem cell with a construct comprising DNA which encodes a protein of interest and then introducing the stem cell into the host where the protein or gene of interest is expressed. The present also relates to methods of producing mesodermal, endodermal or ectodermal lineage-committed cells by culturing or transplantation of the pluripotent stem cells of the present invention.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: December 25, 2018
    Assignee: ABT HOLDING COMPANY
    Inventors: Henry E. Young, Paul A. Lucas
  • Patent number: 9617515
    Abstract: Human non-embryonic adult totipotent and pluripotent stem cells are isolated in a simplified serum-free and feeder cell-free process. Most remarkably, certain stem cells, and especially BLSCs, are extremely small, fail to exclude trypan blue, but are nevertheless able to proliferate from even high dilutions. Therefore, so obtained stem cells can be used to prepare true monoclonal stem cell populations, which are useful in numerous uses, including therapeutic, prophylactic, diagnostic, and research uses.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: April 11, 2017
    Assignee: Moraga Biotechnology Corporation
    Inventors: Henry E. Young, Asa Black
  • Patent number: 9617513
    Abstract: The present invention relates to pluripotent stem cells, particularly to pluripotent embryonic-like stem cells. The invention further relates to methods of purifying pluripotent embryonic-like stem cells and to compositions, cultures and clones thereof. The present invention also relates to a method of transplanting the pluripotent stem cells of the present invention in a mammalian host, such as human, comprising introducing the stem cells, into the host. The invention further relates to methods of in vivo administration of a protein or gene of interest comprising transfecting a pluripotent stem cell with a construct comprising DNA which encodes a protein of interest and then introducing the stem cell into the host where the protein or gene of interest is expressed. The present also relates to methods of producing mesodermal, endodermal or ectodermal lineage-committed cells by culturing or transplantation of the pluripotent stem cells of the present invention.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: April 11, 2017
    Assignee: ABT Holding Company
    Inventors: Henry E. Young, Paul A. Lucas
  • Publication number: 20150056697
    Abstract: Stimulating tissue resident pluripotent stem cells in a manner that the respective subject (e.g., human) acts as its own sterile bioreactor for in vivo stem cell proliferation thus eliminating the need to isolate, cultivate, maintain, proliferate and release stem cells ex vivo. The stimulation mobilizes excess pluripotent stem cells into the peripheral vasculature where the pluripotent stem cells can either migrate to damaged tissues and/or be harvested by simple venipuncture, thus eliminating potential morbidity and mortality elicited from harvesting tissue from solid tissue sites. The pluripotent stem cells are separated from the blood by gravity sedimentation, after which the pluripotent stem cells can easily be aspirated from the white blood cells and red blood cells. Billions of pluripotent stem cells can be generated in this fashion for infusion/injection into the body, via the vasculature, and into the organ(s) in need of tissue repair and regeneration.
    Type: Application
    Filed: October 31, 2014
    Publication date: February 26, 2015
    Inventors: DANIEL F. ROYAL, Henry E. Young, Seth Dyal
  • Publication number: 20150050252
    Abstract: Stimulating tissue resident pluripotent stem cells in a manner that the respective subject (e.g., human) acts as its own sterile bioreactor for in vivo stem cell proliferation thus eliminating the need to isolate, cultivate, maintain, proliferate and release stem cells ex vivo. The stimulation mobilizes excess pluripotent stem cells into the peripheral vasculature where the pluripotent stem cells can either migrate to damaged tissues and/or be harvested by simple venipuncture, thus eliminating potential morbidity and mortality elicited from harvesting tissue from solid tissue sites. The pluripotent stem cells are separated from the blood by gravity sedimentation, after which the pluripotent stem cells can easily be aspirated from the white blood cells and red blood cells. Billions of pluripotent stem cells can be generated in this fashion for infusion/injection into the body, via the vasculature, and into the organ(s) in need of tissue repair and regeneration.
    Type: Application
    Filed: October 31, 2014
    Publication date: February 19, 2015
    Inventors: Daniel F. Royal, Henry E. Young
  • Publication number: 20130071357
    Abstract: Non-embryonic transitional blastomere-like stem cells are disclosed. Most preferably, such cells are obtained from the blood after induction by a plant-based compound to proliferate and reverse diapadese into the vasculature or from various tissues of postnatal mammals or humans (using tissue biopsied from the mammal or human), are in the range of 3-5 microns, have a normal karyotype, and do not spontaneously differentiate in situ (in vivo) or in serum-free medium without differentiation inhibitors. These non-embryonic transitional blastomere-like stem cells typically express CD66e, CEA-CAM-1, CD10, SSEA (SSEA-1, SSEA-3, and SSEA-4), telomerase, Sonic hedgehog, but do not typically express Nanog, Nanos, BCl-2 or CXCR-4. Such transitional blastomere-like pluripotent stem cells can be differentiated into epiblast-like stem cells, ectodermal, mesodermal, and endodermal tissues, but NOT placental tissues or germ cells. Moreover, when implanted into a mammal or human, such cells will not be teratogenic.
    Type: Application
    Filed: February 3, 2012
    Publication date: March 21, 2013
    Applicant: HEYGEN, LLC
    Inventor: Henry E. Young
  • Publication number: 20130028870
    Abstract: Stimulating tissue resident pluripotent stem cells in a manner that the respective subject (e.g., human) acts as its own sterile bioreactor for in vivo stem cell proliferation thus eliminating the need to isolate, cultivate, maintain, proliferate and release stem cells ex vivo. The stimulation mobilizes excess pluripotent stem cells into the peripheral vasculature where the pluripotent stem cells can either migrate to damaged tissues and/or be harvested by simple venipuncture, thus eliminating potential morbidity and mortality elicited from harvesting tissue from solid tissue sites. The pluripotent stem cells are separated from the blood by gravity sedimentation, after which the pluripotent stem cells can easily be aspirated from the white blood cells and red blood cells. Billions of pluripotent stem cells can be generated in this fashion for infusion/injection into the body, via the vasculature, and into the organ(s) in need of tissue repair and regeneration.
    Type: Application
    Filed: January 31, 2012
    Publication date: January 31, 2013
    Inventors: Daniel F. Royal, Henry E. Young, Seth Dyal
  • Publication number: 20110064701
    Abstract: The present invention relates to pluripotent stem cells, particularly to pluripotent embryonic-like stem cells. The invention further relates to methods of purifying pluripotent embryonic-like stem cells and to compositions, cultures and clones thereof. The present invention also relates to a method of transplanting the pluripotent stem cells of the present invention in a mammalian host, such as human, comprising introducing the stem cells, into the host. The invention further relates to methods of in vivo administration of a protein or gene of interest comprising transfecting a pluripotent stem cell with a construct comprising DNA which encodes a protein of interest and then introducing the stem cell into the host where the protein or gene of interest is expressed. The present also relates to methods of producing mesodermal, endodermal or ectodermal lineage-committed cells by culturing or transplantation of the pluripotent stem cells of the present invention.
    Type: Application
    Filed: April 23, 2010
    Publication date: March 17, 2011
    Inventors: Henry E. Young, Paul A. Lucas
  • Publication number: 20100239542
    Abstract: The present invention relates to pluripotent stem cells, particularly to pluripotent embryonic-like stem cells. The invention further relates to methods of purifying pluripotent embryonic-like stem cells and to compositions, cultures and clones thereof. The present invention also relates to a method of transplanting the pluripotent stem cells of the present invention in a mammalian host, such as human, comprising introducing the stem cells, into the host. The invention further relates to methods of in vivo administration of a protein or gene of interest comprising transfecting a pluripotent stem cell with a construct comprising DNA which encodes a protein of interest and then introducing the stem cell into the host where the protein or gene of interest is expressed. The present also relates to methods of producing mesodermal, endodermal or ectodermal lineage-committed cells by culturing or transplantation of the pluripotent stem cells of the present invention.
    Type: Application
    Filed: April 27, 2010
    Publication date: September 23, 2010
    Inventors: Henry E. Young, Paul A. Lucas
  • Publication number: 20100239543
    Abstract: The present invention relates to pluripotent stem cells, particularly to pluripotent embryonic-like stem cells. The invention further relates to methods of purifying pluripotent embryonic-like stem cells and to compositions, cultures and clones thereof. The present invention also relates to a method of transplanting the pluripotent stem cells of the present invention in a mammalian host, such as human, comprising introducing the stem cells, into the host. The invention further relates to methods of in vivo administration of a protein or gene of interest comprising transfecting a pluripotent stem cell with a construct comprising DNA which encodes a protein of interest and then introducing the stem cell into the host where the protein or gene of interest is expressed. The present also relates to methods of producing mesodermal, endodermal or ectodermal lineage-committed cells by culturing or transplantation of the pluripotent stem cells of the present invention.
    Type: Application
    Filed: April 27, 2010
    Publication date: September 23, 2010
    Inventors: Henry E. Young, Paul A. Lucas
  • Publication number: 20090186334
    Abstract: Human non-embryonic adult totipotent and pluripotent stem cells are isolated in a simplified serum-free and feeder cell-free process. Most remarkably, certain stem cells, and especially BLSCs, are extremely small, fail to exclude trypan blue, but are nevertheless able to proliferate from even high dilutions. Therefore, so obtained stem cells can be used to prepare true monoclonal stem cell populations, which are useful in numerous uses, including therapeutic, prophylactic, diagnostic, and research uses.
    Type: Application
    Filed: February 27, 2007
    Publication date: July 23, 2009
    Applicant: MORAGA BIOTECHNOLOGY CORPORATION
    Inventors: Henry E. Young, Asa Black
  • Publication number: 20090104158
    Abstract: Non-embryonic blastomere-like totipotent stem cells are disclosed. Most preferably, such cells are obtained from various tissues of postnatal mammals (e.g., using tissue biopsied from the mammal), are smaller than 1 ?m, have normal karyotype, and do not spontaneously differentiate in serum-free medium without differentiation inhibitors. These non-embryonic blastomere-like totipotent stem cells typically express CD66e, CEA-CAM-1 and telomerase, but do not typically express CD10, SSEA-1, SSEA-3, and SSEA-4. Such blastomere-like totipotent cells can be differentiated into ectodermal, mesodermal, or endodermal tissues, including placental tissues and germ cells. Moreover, when implanted into a mammal, such cells will not be teratogenic.
    Type: Application
    Filed: August 24, 2005
    Publication date: April 23, 2009
    Applicant: MORAGA BIOTECHNOLOGY CORPORATION
    Inventors: Henry E. Young, Asa Black
  • Publication number: 20090104160
    Abstract: Methods are presented in which release of stem cells from skeletal muscle is quantitated and correlated with severity of a disease or trauma, a future treatment option, prognosis, and/or anticipated time to recovery. Most preferably, the stem cell is a BLSC and/or an ELSC, and the stem cell isolation for the cell count is performed using sedimentation or filtration as principal separation step, thereby avoiding commonly used complicated, expensive, and time-consuming processes such as antibody-based separation and fluorescence-activated cell sorting.
    Type: Application
    Filed: February 1, 2008
    Publication date: April 23, 2009
    Applicant: MORAGA BIOTECHNOLOGY CORPORATION
    Inventors: Henry E. Young, Asa Black
  • Publication number: 20040033214
    Abstract: The present invention relates to pluripotent stem cells, particularly to pluripotent embryonic-like stem cells. The invention further relates to methods of purifying pluripotent embryonic-like stem cells and to compositions, cultures and clones thereof. The present invention also relates to a method of transplanting the pluripotent stem cells of the present invention in a mammalian host, such as human, comprising introducing the stem cells, into the host. The invention further relates to methods of in vivo administration of a protein or gene of interest comprising transfecting a pluripotent stem cell with a construct comprising DNA which encodes a protein of interest and then introducing the stem cell into the host where the protein or gene of interest is expressed. The present also relates to methods of producing mesodermal, endodermal or ectodermal lineage-committed cells by culturing or transplantation of the pluripotent stem cells of the present invention.
    Type: Application
    Filed: May 22, 2003
    Publication date: February 19, 2004
    Inventors: Henry E. Young, Paul A. Lucas
  • Publication number: 20030161817
    Abstract: The present invention relates to pluripotent stem cells, particularly to pluripotent embryonic-like stem cells. The invention further relates to methods of purifying pluripotent embryonic-like stem cells and to compositions, cultures and clones thereof. The present invention also relates to a method of transplanting the pluripotent stem cells of the present invention in a mammalian host, such as human, comprising introducing the stem cells, into the host. The invention further relates to methods of in vivo administration of a protein or gene of interest comprising transfecting a pluripotent stem cell with a construct comprising DNA which encodes a protein of interest and then introducing the stem cell into the host where the protein or gene of interest is expressed. The present also relates to methods of producing mesodermal, endodermal or ectodermal lineage-committed cells by culturing or transplantation of the pluripotent stem cells of the present invention.
    Type: Application
    Filed: March 28, 2001
    Publication date: August 28, 2003
    Inventors: Henry E. Young, Paul A. Lucas
  • Patent number: 5827735
    Abstract: A scar inhibitory factor protein isolate from mammalian basement membranes is provided that inhibits lineage commitment and differentiation of stem cells in vitro and in vivo. The protein isolate is characterized by its ability to inhibit stem cell commitment to a fibroblastic-scar phenotype without killing the cells, thus allowing their differentiation into normal tissue phenotypes. SIF thus limits the amount of scar tissue formation at the site of delivery, while maximizing the potential for the stem cells to differentiate into other tissue phenotypes (muscle, cartilage, bone, fat, etc.). Therefore, it is useful in treating numerous disorders and injuries that currently result in scar tissue or fibrous adhesion formation. The protein isolate can be administered in various modalities in vivo, i.e.
    Type: Grant
    Filed: May 20, 1996
    Date of Patent: October 27, 1998
    Assignee: MorphoGen Pharmaceuticals, Inc.
    Inventors: Henry E. Young, Paul A. Lucas
  • Patent number: 5328695
    Abstract: A myogenic protein isolate from mammalian bone is provided that stimulates lineage commitment and differentiation of stem cells in vitro and in vivo. The protein isolate is characterized by its ability to cause muscle stem cell differentiation without excessive proliferation of connective tissue proximal to the delivery site. Treated muscle stem cells differentiate into myotubes and multinucleated structures with minimal formation of scar tissue, resulting in functional muscle tissue restoration in vivo, and therefore useful in the treatment of a number of disorders and injuries. The protein isolate is preferably administered by implanting a bioerodible polymer matrix, preferably a surface erodible polymer such as a polyanhydride or a polyorthoester, interspersed with the protein isolate near the site of muscle injury or degeneration, but can be administered directly to cells cultured in vitro.
    Type: Grant
    Filed: February 11, 1992
    Date of Patent: July 12, 1994
    Assignee: Massachusetts Institute of Technology
    Inventors: Paul A. Lucas, Henry E. Young, Cato T. Laurenchin