Patents by Inventor Herbert W. Barry

Herbert W. Barry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11773335
    Abstract: Systems and methods are provided for using a reverse flow reactor (or another reactor with flows in opposing directions at different parts of a process cycle) for pyrolysis of hydrocarbons. The systems and methods can include a reactor that includes a combustion catalyst to initiate and/or maintain combustion within the reactor in a controlled manner during the heating and/or regeneration portion(s) of the reaction cycle. A fuel can also be used that has a greater resistance to auto-combustion, such as a fuel that is composed primarily of methane and/or other hydrocarbons. During operation, the temperature in at least an initial portion of the reactor can be maintained at a temperature so that auto-ignition of the auto-combustion resistant fuel injected during the heating step(s) is reduced or minimized. This can allow combustion to be initiated when the auto-combustion resistant fuel comes into contact with the catalyst.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: October 3, 2023
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Brian M. Weiss, Sophie Liu, Michael R. Harper, Jr., Herbert W. Barry, Changmin Chun, Barrington S. Goldson, Justin R. Johnson, Faria Nusrat
  • Publication number: 20220235282
    Abstract: Systems and methods are provided for using a reverse flow reactor (or another reactor with flows in opposing directions at different parts of a process cycle) for pyrolysis of hydrocarbons. The systems and methods can include a reactor that includes a combustion catalyst to initiate and/or maintain combustion within the reactor in a controlled manner during the heating and/or regeneration portion(s) of the reaction cycle. A fuel can also be used that has a greater resistance to auto-combustion, such as a fuel that is composed primarily of methane and/or other hydrocarbons. During operation, the temperature in at least an initial portion of the reactor can be maintained at a temperature so that auto-ignition of the auto-combustion resistant fuel injected during the heating step(s) is reduced or minimized. This can allow combustion to be initiated when the auto-combustion resistant fuel comes into contact with the catalyst.
    Type: Application
    Filed: December 7, 2021
    Publication date: July 28, 2022
    Inventors: Brian M. Weiss, Sophie Liu, Michael R. Harper, JR., Herbert W. Barry, Changmin Chun, Barrington S. Goldson, Justin R. Johnson, Faria Nusrat
  • Patent number: 11396450
    Abstract: Sulfur-tolerant reforming catalysts that include bulk alumina in the catalyst support are provided. The sulfur-tolerant reforming catalysts can include a sulfur-tolerant catalytic metal to facilitate reforming. The catalyst can further include a support material that includes at least some alumina as bulk alumina and/or octahedrally coordinated alumina. The sulfur-tolerant reforming catalysts can be regenerated, such as periodically regenerated, under relatively mild conditions that allow the catalysts to maintain reforming activity in the presence of 1 vppm to 1000 vppm of sulfur in the feed for reforming.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: July 26, 2022
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Brian M. Weiss, Tilman W. Beutel, Herbert W. Barry, Gerardo J. Majano Sanchez, John F. Brody, Walter Weissman, Kanmi Mao
  • Patent number: 10920636
    Abstract: Systems and methods are provided for performing selective catalytic reduction on engine exhaust using ethanol from the engine fuel as the reducing agent. Fuel from a fuel tank or other fuel source can be passed through a separation module to produce a fuel stream with a reduced ethanol content and an ethanol-enriched fraction. After combustion of fuel under lean conditions, the combustion exhaust can be exposed to a catalyst system in the presence of the ethanol-enriched fraction.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: February 16, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Brian M. P. Weiss, Shamel Merchant, Randall D. Partridge, Benjamin A. McCool, Ajit B. Dandekar, Herbert W. Barry
  • Publication number: 20190300364
    Abstract: Sulfur-tolerant reforming catalysts that include bulk alumina in the catalyst support are provided. The sulfur-tolerant reforming catalysts can include a sulfur-tolerant catalytic metal to facilitate reforming. The catalyst can further include a support material that includes at least some alumina as bulk alumina and/or octahedrally coordinated alumina. The sulfur-tolerant reforming catalysts can be regenerated, such as periodically regenerated, under relatively mild conditions that allow the catalysts to maintain reforming activity in the presence of 1 vppm to 1000 vppm of sulfur in the feed for reforming.
    Type: Application
    Filed: March 7, 2019
    Publication date: October 3, 2019
    Inventors: Brian M. WEISS, Tilman W. BEUTEL, Herbert W. BARRY, Gerardo J. MAJANO SANCHEZ, John F. BRODY, Walter WEISSMAN, Kanmi MAO
  • Publication number: 20190136734
    Abstract: Systems and methods are provided for performing selective catalytic reduction on engine exhaust using ethanol from the engine fuel as the reducing agent. Fuel from a fuel tank or other fuel source can be passed through a separation module to produce a fuel stream with a reduced ethanol content and an ethanol-enriched fraction. After combustion of fuel under lean conditions, the combustion exhaust can be exposed to a catalyst system in the presence of the ethanol-enriched fraction.
    Type: Application
    Filed: October 29, 2018
    Publication date: May 9, 2019
    Inventors: Brian M.P. Weiss, Shamel Merchant, Randall D. Partridge, Benjamin A. McCool, Ajit B. Dandekar, Herbert W. Barry