Patents by Inventor Hideaki Aochi

Hideaki Aochi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9941296
    Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: April 10, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Hideaki Aochi, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota
  • Patent number: 9917098
    Abstract: One embodiment includes a plurality of memory cells and a plurality of conducting layers. The memory cells are three-dimensionally disposed on a semiconductor substrate. The conducting layers are disposed in a laminating direction. Each of the plurality of the conducting layers is connected to each of the plurality of the memory cells. Each conducting layer has a structure where a first conductive film and a second conductive film are laminated in the laminating direction. The conducting layers adjacent to one another in the laminating direction have a laminating order of the first conductive film and the second conductive film different from one another.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: March 13, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Jun Fujiki, Takeshi Kamigaichi, Hideaki Aochi
  • Patent number: 9876029
    Abstract: A semiconductor memory device according to an embodiment comprises: a plurality of memory strings arranged in a first direction intersecting a surface of a semiconductor substrate, each of the memory strings including a plurality of memory transistors connected in series in a second direction along the surface of the semiconductor substrate; a source side select transistor connected to one end of the memory string; a drain side select transistor connected to the other end of the memory string; a plurality of source lines respectively connected, via the source side select transistor, to each of the plurality of memory strings arranged along the first direction; a bit line commonly connected, via the drain side select transistor, to the plurality of memory strings arranged along the first direction; a word line connected to a gate electrode of the memory transistor; and a layer selector disposed between the source line and the source side select transistor and commonly connected to the plurality of memory strin
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: January 23, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Jun Fujiki, Takeshi Kamigaichi, Hideaki Aochi
  • Publication number: 20170338244
    Abstract: A nonvolatile semiconductor memory device that have a new structure are provided, in which memory cells are laminated in a three dimensional state so that the chip area may be reduced. The nonvolatile semiconductor memory device of the present invention is a nonvolatile semiconductor memory device that has a plurality of the memory strings, in which a plurality of electrically programmable memory cells is connected in series. The memory strings comprise a pillar shaped semiconductor; a first insulation film formed around the pillar shaped semiconductor; a charge storage layer formed around the first insulation film; the second insulation film formed around the charge storage layer; and first or nth electrodes formed around the second insulation film (n is natural number more than 1). The first or nth electrodes of the memory strings and the other first or nth electrodes of the memory strings are respectively the first or nth conductor layers that are spread in a two dimensional state.
    Type: Application
    Filed: August 2, 2017
    Publication date: November 23, 2017
    Inventors: Masaru Kito, Hideaki Aochi, Ryota Katsumata, Akihiro Nitayama, Masaru Kidoh, Hiroyasu Tanaka, Yoshiaki Fukuzumi, Yasuyuki Matsuoka, Mitsuru Sato
  • Patent number: 9825054
    Abstract: The memory string comprises: a first semiconductor layer; a stacked body in which a plurality of conductive layers and a plurality of interlayer insulating layers are stacked along a first direction above the first semiconductor layer; and a second semiconductor layer having a longitudinal direction along the first direction and provided above the first semiconductor layer. The memory insulating layer includes a charge accumulation layer between the second semiconductor layer and the plurality of the conductive layers. The core insulating layer has a longitudinal direction along the first direction, and is provided in the second semiconductor layer. The oxide film layer is provided between the core insulating layer and the second semiconductor layer.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: November 21, 2017
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Kotaro Fujii, Hideaki Aochi
  • Publication number: 20170330895
    Abstract: A non-volatile semiconductor storage device has a plurality of memory strings to each of which a plurality of electrically rewritable memory cells are connected in series. Each of the memory strings includes first semiconductor layers each having a pair of columnar portions extending in a vertical direction with respect to a substrate and a coupling portion formed to couple the lower ends of the pair of columnar portions; a charge storage layer formed to surround the side surfaces of the columnar portions; and first conductive layers formed to surround the side surfaces of the columnar portions and the charge storage layer. The first conductive layers function as gate electrodes of the memory cells.
    Type: Application
    Filed: July 31, 2017
    Publication date: November 16, 2017
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshiaki FUKUZUMI, Ryota KATSUMATA, Masaru KIDOH, Masaru KITO, Hiroyasu TANAKA, Yosuke KOMORI, Megumi ISHIDUKI, Hideaki AOCHI
  • Patent number: 9786679
    Abstract: According to one embodiment, a method for manufacturing a semiconductor memory device includes forming a mask layer on the stacked body. The method includes forming a stopper film in a part of the mask layer. The method includes forming a plurality of mask holes in the mask layer. The mask holes include a first mask hole overlapping on the stopper film. The method includes, by etching using the mask layer, forming holes in the stacked body under other mask holes than the first mask hole on the stopper film, but not forming holes in the stacked body under the stopper film. The method includes forming memory films and channel bodies in the holes.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: October 10, 2017
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Yoshiaki Fukuzumi, Hideaki Aochi, Mitsuhiro Omura
  • Publication number: 20170278851
    Abstract: A semiconductor memory device according to one embodiment includes a stacked body and a semiconductor layer. The stacked body includes a plurality of control gate electrodes stacked above a substrate. The semiconductor layer extends in a first direction intersecting with the substrate and faces the plurality of control gate electrodes. The semiconductor memory device further includes a gate insulating layer disposed between the control gate electrodes and the semiconductor layer. The gate insulating layer includes zirconium oxide at a position facing the control gate electrodes.
    Type: Application
    Filed: August 16, 2016
    Publication date: September 28, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kotaro FUJII, Hideaki Aochi, Yasuhito Yoshimizu
  • Publication number: 20170278862
    Abstract: A semiconductor memory device according to an embodiment comprises: a plurality of memory strings arranged in a first direction intersecting a surface of a semiconductor substrate, each of the memory strings including a plurality of memory transistors connected in series in a second direction along the surface of the semiconductor substrate; a source side select transistor connected to one end of the memory string; a drain side select transistor connected to the other end of the memory string; a plurality of source lines respectively connected, via the source side select transistor, to each of the plurality of memory strings arranged along the first direction; a bit line commonly connected, via the drain side select transistor, to the plurality of memory strings arranged along the first direction; a word line connected to a gate electrode of the memory transistor; and a layer selector disposed between the source line and the source side select transistor and commonly connected to the plurality of memory strin
    Type: Application
    Filed: September 15, 2016
    Publication date: September 28, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Jun FUJIKI, Takeshi KAMIGAICHI, Hideaki AOCHI
  • Publication number: 20170271365
    Abstract: The memory string comprises: a first semiconductor layer; a stacked body in which a plurality of conductive layers and a plurality of interlayer insulating layers are stacked along a first direction above the first semiconductor layer; and a second semiconductor layer having a longitudinal direction along the first direction and provided above the first semiconductor layer. The memory insulating layer includes a charge accumulation layer between the second semiconductor layer and the plurality of the conductive layers. The core insulating layer has a longitudinal direction along the first direction, and is provided in the second semiconductor layer. The oxide film layer is provided between the core insulating layer and the second semiconductor layer.
    Type: Application
    Filed: September 21, 2016
    Publication date: September 21, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kotaro FUJII, Hideaki AOCHI
  • Publication number: 20170263636
    Abstract: According to one embodiment, a semiconductor device includes a first interconnection, a first semiconductor region, a stacked body, a columnar portion, first insulators, and arrays. The first interconnection is provided on a substrate via a first insulating film interposed. The first semiconductor region is provided on the first interconnection via a second insulating film. The stacked body is provided on the first semiconductor region. The columnar portion is provided in the stacked body. The first insulators are provided in the stacked body. The first insulators extend in the stacking direction and a first direction crossing the stacking direction. The arrays are provided in the first semiconductor region. The arrays each include second semiconductor regions. The second semiconductor regions are separated from each other. The second semiconductor regions are provided under the first insulators. The second semiconductor regions are electrically connected to the first interconnection.
    Type: Application
    Filed: September 15, 2016
    Publication date: September 14, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Takashi ISHIDA, Jun FUJIKI, Shinya ARAI, Fumitaka ARAI, Hideaki AOCHI, Kotaro FUJII
  • Patent number: 9761606
    Abstract: According to one embodiment, a semiconductor device includes a first interconnection, a first semiconductor region, a stacked body, a columnar portion, first insulators, and arrays. The first interconnection is provided on a substrate via a first insulating film interposed. The first semiconductor region is provided on the first interconnection via a second insulating film. The stacked body is provided on the first semiconductor region. The columnar portion is provided in the stacked body. The first insulators are provided in the stacked body. The first insulators extend in the stacking direction and a first direction crossing the stacking direction. The arrays are provided in the first semiconductor region. The arrays each include second semiconductor regions. The second semiconductor regions are separated from each other. The second semiconductor regions are provided under the first insulators. The second semiconductor regions are electrically connected to the first interconnection.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: September 12, 2017
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Takashi Ishida, Jun Fujiki, Shinya Arai, Fumitaka Arai, Hideaki Aochi, Kotaro Fujii
  • Patent number: 9748260
    Abstract: A nonvolatile semiconductor memory device that have a new structure are provided, in which memory cells are laminated in a three dimensional state so that the chip area may be reduced. The nonvolatile semiconductor memory device of the present invention is a nonvolatile semiconductor memory device that has a plurality of the memory strings, in which a plurality of electrically programmable memory cells is connected in series. The memory strings comprise a pillar shaped semiconductor; a first insulation film formed around the pillar shaped semiconductor; a charge storage layer formed around the first insulation film; the second insulation film formed around the charge storage layer; and first or nth electrodes formed around the second insulation film (n is natural number more than 1). The first or nth electrodes of the memory strings and the other first or nth electrodes of the memory strings are respectively the first or nth conductor layers that are spread in a two dimensional state.
    Type: Grant
    Filed: May 29, 2015
    Date of Patent: August 29, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Kito, Hideaki Aochi, Ryota Katsumata, Akihiro Nitayama, Masaru Kidoh, Hiroyasu Tanaka, Yoshiaki Fukuzumi, Yasuyuki Matsuoka, Mitsuru Sato
  • Patent number: 9741738
    Abstract: A non-volatile semiconductor storage device has a plurality of memory strings to each of which a plurality of electrically rewritable memory cells are connected in series. Each of the memory strings includes first semiconductor layers each having a pair of columnar portions extending in a vertical direction with respect to a substrate and a coupling portion formed to couple the lower ends of the pair of columnar portions; a charge storage layer formed to surround the side surfaces of the columnar portions; and first conductive layers formed to surround the side surfaces of the columnar portions and the charge storage layer. The first conductive layers function as gate electrodes of the memory cells.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: August 22, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kidoh, Masaru Kito, Hiroyasu Tanaka, Yosuke Komori, Megumi Ishiduki, Hideaki Aochi
  • Publication number: 20170200734
    Abstract: One embodiment includes a plurality of memory cells and a plurality of conducting layers. The memory cells are three-dimensionally disposed on a semiconductor substrate. The conducting layers are disposed in a laminating direction. Each of the plurality of the conducting layers is connected to each of the plurality of the memory cells. Each conducting layer has a structure where a first conductive film and a second conductive film are laminated in the laminating direction. The conducting layers adjacent to one another in the laminating direction have a laminating order of the first conductive film and the second conductive film different from one another.
    Type: Application
    Filed: August 4, 2016
    Publication date: July 13, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Jun Fujiki, Takeshi Kamigaichi, Hideaki Aochi
  • Patent number: 9691786
    Abstract: A semiconductor memory device according to an embodiment includes: a first semiconductor layer; and a memory cell array on the first semiconductor layer, the memory cell array including a source line, a second semiconductor layer, and a conductive layer, those are sequentially disposed in a first direction and the memory cell array further including a third semiconductor layer which is columnar and extends in the first direction and a charge accumulation film disposed between the conductive layer and the third semiconductor layer, wherein the second semiconductor layer includes a first impurity region of a first conductivity type disposed at a position of the third semiconductor layer as viewed from the first direction and a second impurity region adjacent to the first impurity region which has a second conductivity type different from the first conductivity type.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: June 27, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Masaki Tsuji, Hideaki Aochi, Jun Fujiki
  • Publication number: 20170148815
    Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.
    Type: Application
    Filed: February 3, 2017
    Publication date: May 25, 2017
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshiaki FUKUZUMI, Ryota KATSUMATA, Masaru KITO, Masaru KIDOH, Hiroyasu TANAKA, Yosuke KOMORI, Megumi ISHIDUKI, Junya MATSUNAMI, Tomoko FUJIWARA, Hideaki AOCHI, Ryouhei KlRISAWA, Yoshimasa MIKAJIRI, Shigeta OOTA
  • Publication number: 20170103994
    Abstract: According to one embodiment, the array chip includes a three-dimensionally disposed plurality of memory cells and a memory-side interconnection layer connected to the memory cells. The circuit chip includes a substrate, a control circuit provided on the substrate, and a circuit-side interconnection layer provided on the control circuit and connected to the control circuit. The circuit chip is stuck to the array chip with the circuit-side interconnection layer facing to the memory-side interconnection layer. The bonding metal is provided between the memory-side interconnection layer and the circuit-side interconnection layer. The bonding metal is bonded to the memory-side interconnection layer and the circuit-side interconnection layer.
    Type: Application
    Filed: December 22, 2016
    Publication date: April 13, 2017
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki FUKUZUMI, Hideaki AOCHI
  • Patent number: 9601503
    Abstract: A nonvolatile semiconductor memory device, includes: a stacked structural unit including a plurality of insulating films alternately stacked with a plurality of electrode films in a first direction; a selection gate electrode stacked on the stacked structural unit in the first direction; an insulating layer stacked on the selection gate electrode in the first direction; a first semiconductor pillar piercing the stacked structural unit, the selection gate electrode, and the insulating layer in the first direction, a first cross section of the first semiconductor pillar having an annular configuration, the first cross section being cut in a plane orthogonal to the first direction; a first core unit buried in an inner side of the first semiconductor pillar, the first core unit being recessed from an upper face of the insulating layer; and a first conducting layer of the first semiconductor pillar provided on the first core unit to contact the first core unit.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: March 21, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshiaki Fukuzumi, Ryota Katsumata, Masaru Kito, Masaru Kidoh, Hiroyasu Tanaka, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Hideaki Aochi, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota
  • Patent number: RE46785
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a substrate, a stacked body, a semiconductor pillar, a charge storage film, and a drive circuit. The stacked body is provided on the substrate. The stacked body includes a plurality of insulating films alternately stacked with a plurality of electrode films. A through-hole is made in the stacked body to align in a stacking direction. The semiconductor pillar is buried in an interior of the through-hole. The charge storage film is provided between the electrode film and the semiconductor pillar. The drive circuit supplies a potential to the electrode film. The diameter of the through-hole differs by a position in the stacking direction. The drive circuit supplies a potential to reduce a potential difference with the semiconductor pillar as a diameter of the through-hole piercing the electrode film decreases.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: April 10, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Ryota Katsumata, Hideaki Aochi, Hiroyasu Tanaka, Masaru Kito, Yoshiaki Fukuzumi, Masaru Kidoh, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota