Patents by Inventor Hideaki Shinoda

Hideaki Shinoda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9819007
    Abstract: A negative-electrode material has negative-electrode active-material particles including: an element being capable of sorbing and desorbing lithium ions, and being capable of undergoing an alloying reaction with lithium; or/and an elementary compound being capable of undergoing an alloying reaction with lithium. The negative-electrode active-material particles includes particles whose particle diameter is 1 ?m or more in an amount of 85% by volume or more of them when the entirety is taken as 100% by volume, exhibit a BET specific surface area that is 6 m2/g or less, and exhibits a “D50” that is 4.5 ?m or more.
    Type: Grant
    Filed: October 3, 2012
    Date of Patent: November 14, 2017
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuichi Hirakawa, Manabu Miyoshi, Hideaki Shinoda, Takayuki Kato, Keiichi Hayashi, Kayo Mizuno, Yoshikatsu Kawabata, Megumi Yamamoto
  • Patent number: 9819008
    Abstract: A negative electrode for lithium-ion secondary battery including a negative electrode that includes a current collector; and a negative-electrode active-material layer formed on a surface of the current collector, and including negative-electrode active-material particles. The negative-electrode active-material particles include an element being capable of sorbing and desorbing lithium ions, and being capable of undergoing an alloying reaction with lithium; or/and an elementary compound being capable of undergoing an alloying reaction with lithium, the negative-electrode active-material particles include particles whose particle diameter is 1 ?m or more in an amount of 85% by volume or more thereof when the entirety is taken as 100% by volume, and exhibit a “D10” being 3 ?m or more. The negative-electrode active-material layer having a thickness that is 1.4 times or more of a “D90” that said negative-electrode active-material particles exhibit.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: November 14, 2017
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuichi Hirakawa, Manabu Miyoshi, Hideaki Shinoda, Takayuki Kato, Keiichi Hayashi, Kayo Mizuno, Yoshikatsu Kawabata, Megumi Yamamoto
  • Patent number: 9819009
    Abstract: A lithium-ion secondary battery including a negative electrode including negative-electrode active-material particles including an element being capable of sorbing and desorbing lithium ions, and being capable of alloying with lithium; or/and an elementary compound including an element that is capable of alloying with lithium; a positive electrode including a positive-electrode active material that enables Li ions to be sorbed therein and desorbed therefrom; and an electrolytic solution made by dissolving an electrolyte in a solvent. The negative-electrode active-material particles include particles whose particle diameter is 1 ?m or more in an amount of 85% by volume or more thereof when the entirety of said negative-electrode active-material particles, which are included in said negative electrode, is taken as 100% by volume, and the negative-electrode active-material particles exhibit a “D10” being 3 ?m or more. The solvent in the electrolytic solution includes a fluorinated ethylene carbonate.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: November 14, 2017
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuichi Hirakawa, Manabu Miyoshi, Hideaki Shinoda, Takayuki Kato, Keiichi Hayashi, Kayo Mizuno, Yoshikatsu Kawabata, Megumi Yamamoto
  • Patent number: 9774039
    Abstract: It is an assignment to provide the following: a negative-electrode material for electric storage device, a negative electrode for electric storage device, and an electric storage device, negative-electrode material, negative electrode and electric storage device in which SiOx is used as a negative-electrode active material, which excel in the conductivity, and which can inhibit the discharge capacity from declining; as well as a vehicle having the electric storage device on-board.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: September 26, 2017
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Megumi Yamamoto, Manabu Miyoshi, Hideaki Shinoda
  • Publication number: 20170084905
    Abstract: A negative-electrode stuff has negative-electrode active-material particles including: an element being capable of sorbing and desorbing lithium ions, and being capable of undergoing an alloying reaction with lithium; or/and an elementary compound being capable of undergoing an alloying reaction with lithium. The negative-electrode active-material particles includes particles whose particle diameter is 1 ?m or more in an amount of 85% by volume or more of them when the entirety is taken as 100% by volume, exhibit a BET specific surface area that is 6 m2/g or less, and exhibits a “D50” that is 4.5 ?m or more.
    Type: Application
    Filed: December 6, 2016
    Publication date: March 23, 2017
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuichi HIRAKAWA, Manabu MIYOSHI, Hideaki SHINODA, Takayuki KATO, Keiichi HAYASHI, Kayo MIZUNO, Yoshikatsu KAWABATA, Megumi YAMAMOTO
  • Publication number: 20170084906
    Abstract: A negative-electrode stuff has negative-electrode active-material particles including: an element being capable of sorbing and desorbing lithium ions, and being capable of undergoing an alloying reaction with lithium; or/and an elementary compound being capable of undergoing an alloying reaction with lithium. The negative-electrode active-material particles includes particles whose particle diameter is 1 ?m or more in an amount of 85% by volume or more of them when the entirety is taken as 100% by volume, exhibit a BET specific surface area that is 6 m2/g or less, and exhibits a “D50” that is 4.5 ?m or more.
    Type: Application
    Filed: December 6, 2016
    Publication date: March 23, 2017
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuichi HIRAKAWA, Manabu MIYOSHI, Hideaki SHINODA, Takayuki KATO, Keiichi HAYASHI, Kayo MIZUNO, Yoshikatsu KAWABATA, Megumi YAMAMOTO
  • Patent number: 9577246
    Abstract: Provided is a negative electrode active material containing SiOx and carbonaceous particles containing graphite and having both good discharge capacity and good electric conductivity. Also provided is a negative electrode using the negative electrode active material and a nonaqueous electrolyte secondary battery. When the carbonaceous particles have an average particle diameter D50 of ? (?m) and a BET specific surface area of ? (m2/g), the ? and the ? satisfy the following Formulae (1) and (2). ???(12/18)?+12??(1) 5???15??(2).
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: February 21, 2017
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Megumi Yamamoto, Hideaki Shinoda, Hirokuni Akiyama, Manabu Miyoshi
  • Publication number: 20140308588
    Abstract: A negative-electrode stuff has negative-electrode active-material particles including: an element being capable of sorbing and desorbing lithium ions, and being capable of undergoing an alloying reaction with lithium; or/and an elementary compound being capable of undergoing an alloying reaction with lithium. The negative-electrode active-material particles includes particles whose particle diameter is 1 ?m or more in an amount of 85% by volume or more of them when the entirety is taken as 100% by volume, exhibit a BET specific surface area that is 6 m2/g or less, and exhibits a “D50” that is 4.5 ?m or more.
    Type: Application
    Filed: October 3, 2012
    Publication date: October 16, 2014
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuichi Hirakawa, Manabu Miyoshi, Hideaki Shinoda, Takayuki Kato, Keiichi Hayashi, Kayo Mizuno, Yoshikatsu Kawabata, Megumi Yamamoto
  • Publication number: 20140242469
    Abstract: Provided is a negative electrode active material containing SiOx and carbonaceous particles containing graphite and having both good discharge capacity and good electric conductivity. Also provided is a negative electrode using the negative electrode active material and a nonaqueous electrolyte secondary battery. When the carbonaceous particles have an average particle diameter D50 of ? (?m) and a BET specific surface area of ? (m2/g), the ? and the ? satisfy the following Formulae (1) and (2).
    Type: Application
    Filed: February 21, 2014
    Publication date: August 28, 2014
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Megumi YAMAMOTO, Hideaki SHINODA, Hirokuni AKIYAMA, Manabu MIYOSHI
  • Publication number: 20140234705
    Abstract: It is an assignment to provide the following: a negative-electrode material for electric storage device, a negative electrode for electric storage device, and an electric storage device, negative-electrode material, negative electrode and electric storage device in which SiOx is used as a negative-electrode active material, which excel in the conductivity, and which can inhibit the discharge capacity from declining; as well as a vehicle having the electric storage device on-board.
    Type: Application
    Filed: October 5, 2012
    Publication date: August 21, 2014
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Megumi Yayamoto, Manabu Miyoshi, Hideaki Shinoda
  • Publication number: 20140134491
    Abstract: Provided is a lithium containing composite oxide powder suitable for the positive electrode active material of the non-aqueous electrolysis solution secondary battery such as the lithium ion secondary battery, and a manufacturing process for the same. A lithium containing composite oxide powder includes a single crystal particle containing a lithium containing composite oxide that is manufactured by a molten salt method and that includes at least lithium and another one or more metal elements and in which a crystal structure belongs to a lamellar rock salt structure, wherein an average primary particle diameter is greater than or equal to 200 nm and smaller than or equal to 30 ?m. The lithium containing composite oxide powder is grown by reacting the metal containing ingredient in the molten salt of the lithium hydroxide at a reaction temperature of higher than or equal to 650° C. and lower than or equal to 900° C.
    Type: Application
    Filed: June 22, 2012
    Publication date: May 15, 2014
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuki Sugimoto, Naoto Yasuda, Fumiya Kanetake, Hideaki Shinoda, Manabu Miyoshi, Kyoichi Kinoshita, Toru Abe