Patents by Inventor Hideaki TANIMURA

Hideaki TANIMURA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11574824
    Abstract: A semiconductor wafer to be treated is heated at a first preheating temperature ranging from 100 to 200° C. while a pressure in a chamber housing the semiconductor wafer is reduced to a pressure lower than an atmospheric pressure. After the semiconductor wafer is preheated to increase the temperature into a second preheating temperature ranging from 500 to 700° C. while the pressure in the chamber is restored to a pressure higher than the reduced pressure, a flash lamp emits a flashlight to a surface of the semiconductor wafer. Heating the semiconductor wafer at the first preheating temperature that is a relatively low temperature enables, for example, the moisture absorbed on the surface of the semiconductor wafer in trace amounts to be desorbed from the surface, and also enables the flash heating treatment to be performed with oxygen derived from such absorption removed as much as possible.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: February 7, 2023
    Assignee: SCREEN HOLDINGS CO., LTD.
    Inventors: Takayuki Aoyama, Shinichi Kato, Kazuhiko Fuse, Hikaru Kawarazaki, Masashi Furukawa, Hideaki Tanimura, Akitsugu Ueda
  • Publication number: 20220076970
    Abstract: A light diffusion plate is placed on an upper surface of an upper chamber window. A blasting process is applied to a lower surface of the light diffusion plate to provide the lower surface in the form of frosted glass. When the light diffusion plate is placed on the upper surface of the upper chamber window, the light diffusion plate and the upper chamber window do not closely adhere to each other. The frosted glass releases a mass of air entering between contact surfaces of the light diffusion plate and the upper chamber window to the outside even if the mass of air thermally expands during heat treatment. This restrains the occurrence of a phenomenon in which a thin layer of air is trapped between the light diffusion plate and the upper chamber window to prevent the sliding of the light diffusion plate resulting from the air layer.
    Type: Application
    Filed: September 2, 2021
    Publication date: March 10, 2022
    Inventors: Akitsugu UEDA, Hiroshi MIYAKE, Kazuhiko FUSE, Hideaki TANIMURA
  • Publication number: 20210327709
    Abstract: A gate insulator film made of silicon dioxide or gallium oxide is formed on a gallium nitride (GaN) substrate. The GaN substrate is preheated by irradiation with light from halogen lamps, and the surface of the substrate including the gate insulator film is heated to a high temperature for an extremely short time by irradiation with a flash of light from flash lamps. Heating the substrate surface including the gate insulator film in an extremely short heat treatment time prevents the desorption of nitrogen from GaN and makes it possible to reduce the traps existing at the interface between the gate insulator film and GaN without diffusing gallium into the gate insulator film.
    Type: Application
    Filed: July 1, 2019
    Publication date: October 21, 2021
    Inventors: Hideaki TANIMURA, Takahiro YAMADA
  • Publication number: 20210274598
    Abstract: A semiconductor wafer held by a holding part in a chamber is irradiated and heated with halogen light emitted from a plurality of halogen lamps. A cylindrical louver and an annular light-shielding member, both made of opaque quartz, are provided between the halogen lamps and the semiconductor wafer. The outer diameter of the light-shielding member is smaller than the inner diameter of the louver. Light emitted from the halogen lamps and passing through a clearance between the inner wall surface of the louver and the outer circumference of the light-shielding member is applied to a peripheral portion of the semiconductor wafer where a temperature drop is likely to occur. On the other hand, light travelling toward an overheat region that has a higher temperature than the other region and appears in the surface of the semiconductor wafer when only a louver is installed is blocked off by the light-shielding member.
    Type: Application
    Filed: May 20, 2021
    Publication date: September 2, 2021
    Inventors: Makoto ABE, Hikaru KAWARAZAKI, Hideaki TANIMURA, Masashi FURUKAWA
  • Patent number: 11089657
    Abstract: A semiconductor wafer held by a holding part in a chamber is irradiated and heated with halogen light emitted from a plurality of halogen lamps. A cylindrical louver and an annular light-shielding member, both made of opaque quartz, are provided between the halogen lamps and the semiconductor wafer. The outer diameter of the light-shielding member is smaller than the inner diameter of the louver. Light emitted from the halogen lamps and passing through a clearance between the inner wall surface of the louver and the outer circumference of the light-shielding member is applied to a peripheral portion of the semiconductor wafer where a temperature drop is likely to occur. On the other hand, light travelling toward an overheat region that has a higher temperature than the other region and appears in the surface of the semiconductor wafer when only a louver is installed is blocked off by the light-shielding member.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: August 10, 2021
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Makoto Abe, Hikaru Kawarazaki, Hideaki Tanimura, Masashi Furukawa
  • Patent number: 10985021
    Abstract: A gallium nitride (GaN) substrate is injected with magnesium as a p-type dopant. The GaN substrate undergoes preheating through irradiation with light from halogen lamps in an atmosphere containing nitrogen and hydrogen, and further undergoes heating to a high temperature for a super-short time through irradiation with flashes of light from flash lamps. Heating the GaN substrate in the atmosphere containing nitrogen and hydrogen complements removed nitrogen, thus preventing nitrogen shortage. Such a heating process also enables heat treatment while supplying hydrogen to the GaN substrate. The heating process further enables crystal defects in the GaN substrate to be recovered. With these effects, the p-type dopant injected into the GaN substrate is activated with high efficiency.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: April 20, 2021
    Assignee: SCREEN HOLDINGS CO., LTD.
    Inventors: Hideaki Tanimura, Takahiro Yamada, Shinichi Kato, Takayuki Aoyama
  • Patent number: 10978319
    Abstract: Over a front surface of a silicon semiconductor wafer is deposited a high dielectric constant film with a silicon oxide film, serving as an interface layer, provided between the semiconductor wafer and the high dielectric constant film. After a chamber houses the semiconductor wafer, a chamber's pressure is reduced to be lower than atmospheric pressure. Subsequently, a gaseous mixture of ammonia and nitrogen gas is supplied into the chamber to return the pressure to ordinary pressure, and the front surface is irradiated with a flash light, thereby performing post deposition annealing (PDA) on the high dielectric constant film. Since the pressure is reduced once to be lower than atmospheric pressure and then returned to ordinary pressure, a chamber's oxygen concentration is lowered remarkably during the PDA. This restricts an increase in thickness of the silicon oxide film underlying the high dielectric constant film by oxygen taken in during the PDA.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: April 13, 2021
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Takayuki Aoyama, Hikaru Kawarazaki, Masashi Furukawa, Shinichi Kato, Kazuhiko Fuse, Hideaki Tanimura
  • Patent number: 10790171
    Abstract: Over a front surface of a silicon semiconductor wafer is deposited a high dielectric constant film with a silicon oxide film, serving as an interface layer, provided between the semiconductor wafer and the high dielectric constant film. After a chamber houses the semiconductor wafer, a chamber's pressure is reduced to be lower than atmospheric pressure. Subsequently, a gaseous mixture of ammonia and nitrogen gas is supplied into the chamber to return the pressure to ordinary pressure, and the front surface is irradiated with a flash light, thereby performing post deposition annealing (PDA) on the high dielectric constant film. Since the pressure is reduced once to be lower than atmospheric pressure and then returned to ordinary pressure, a chamber's oxygen concentration is lowered remarkably during the PDA. This restricts an increase in thickness of the silicon oxide film underlying the high dielectric constant film by oxygen taken in during the PDA.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: September 29, 2020
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Takayuki Aoyama, Hikaru Kawarazaki, Masashi Furukawa, Shinichi Kato, Kazuhiko Fuse, Hideaki Tanimura
  • Patent number: 10777415
    Abstract: Hydrogen annealing for heating a semiconductor wafer on which a thin film containing a dopant is deposited to an annealing temperature under an atmosphere containing hydrogen is performed. A native oxide film is inevitably formed between the thin film containing the dopant and the semiconductor wafer, however, by performing hydrogen annealing, the dopant atoms diffuse relatively easily in the native oxide film and accumulate at the interface between the front surface of the semiconductor wafer and the native oxide film. Subsequently, the semiconductor wafer is preheated to a preheating temperature under a nitrogen atmosphere, and then, flash heating treatment in which the front surface of the semiconductor wafer is heated to a peak temperature for less than one second is performed. The dopant atoms are diffused and activated in a shallow manner from the front surface of the semiconductor wafer, thus, the low-resistance and extremely shallow junction is obtained.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: September 15, 2020
    Assignee: SCREEN HOLDINGS CO., LTD.
    Inventors: Kazuhiko Fuse, Hikaru Kawarazaki, Hideaki Tanimura, Shinichi Kato
  • Patent number: 10699906
    Abstract: A germanium semiconductor layer doped with a dopant such as boron becomes a p-type semiconductor. The semiconductor layer is preheated at a preheating temperature ranging from 200° C. to 300° C., and then heated at a treatment temperature ranging from 500° C. to 900° C., by extremely short-time irradiation of flash light. While oxygen is unavoidably mixed in germanium and becomes a thermal donor at 300° C. to 500° C., the semiconductor layer stays in a temperature range of 300° C. to 500° C. for a negligibly short period of time due to an extremely short irradiation time of 0.1 milliseconds to 100 milliseconds by the flash light. Therefore, the thermal donor can be prevented from being generated in the germanium semiconductor layer.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: June 30, 2020
    Assignee: SCREEN HOLDINGS CO., LTD.
    Inventor: Hideaki Tanimura
  • Patent number: 10643850
    Abstract: A PSG film, which is a silicon dioxide thin film containing phosphorus as a dopant, is formed on the surface of a semiconductor wafer. The semiconductor wafer having the PSG film formed thereon is kept at a predetermined heating temperature by light radiation from halogen lamps in the atmosphere containing hydrogen for 1 second or longer, so that the dopant is diffused from the PSG film into the surface of the semiconductor wafer. In addition, the flashing light is radiated to the semiconductor wafer for the radiation time shorter than 1 second to heat the surface of the semiconductor wafer to the target temperature so as to activate the dopant. When the PSG film is heated in the atmosphere containing hydrogen, a diffusion coefficient of the dopant contained in the PSG film becomes high; therefore, the dopant can be efficiently diffused from the PSG film into the semiconductor wafer.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: May 5, 2020
    Assignee: SCREEN HOLDINGS CO., LTD.
    Inventors: Hideaki Tanimura, Takayuki Aoyama, Kazuhiko Fuse, Takahiro Yamada
  • Patent number: 10580667
    Abstract: A heat treatment apparatus is provided with two cool chambers, that is, a first cool chamber and a second cool chamber. A semiconductor wafer before treatment is alternately carried into the first cool chamber or the second cool chamber and then transported to a heat treatment part by a transport robot after a nitrogen purge is performed. The semiconductor wafer after being heat-treated in the heat treatment part is alternately transported to the first cool chamber or the second cool chamber to be cooled. A sufficient cooling time is secured for the independent semiconductor wafer, and a reduction in throughput as the whole heat treatment apparatus can be suppressed.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: March 3, 2020
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Takayuki Aoyama, Yasuaki Kondo, Shinji Miyawaki, Shinichi Kato, Kazuhiko Fuse, Hideaki Tanimura, Akitsugu Ueda, Hikaru Kawarazaki, Masashi Furukawa
  • Publication number: 20200066532
    Abstract: A gallium nitride (GaN) substrate is injected with magnesium as a p-type dopant. The GaN substrate undergoes preheating through irradiation with light from halogen lamps in an atmosphere containing nitrogen and hydrogen, and further undergoes heating to a high temperature for a super-short time through irradiation with flashes of light from flash lamps. Heating the GaN substrate in the atmosphere containing nitrogen and hydrogen complements removed nitrogen, thus preventing nitrogen shortage. Such a heating process also enables heat treatment while supplying hydrogen to the GaN substrate. The heating process further enables crystal defects in the GaN substrate to be recovered. With these effects, the p-type dopant injected into the GaN substrate is activated with high efficiency.
    Type: Application
    Filed: July 23, 2019
    Publication date: February 27, 2020
    Inventors: Hideaki TANIMURA, Takahiro YAMADA, Shinichi KATO, Takayuki AOYAMA
  • Publication number: 20190311924
    Abstract: Over a front surface of a silicon semiconductor wafer is deposited a high dielectric constant film with a silicon oxide film, serving as an interface layer, provided between the semiconductor wafer and the high dielectric constant film. After a chamber houses the semiconductor wafer, a chamber's pressure is reduced to be lower than atmospheric pressure. Subsequently, a gaseous mixture of ammonia and nitrogen gas is supplied into the chamber to return the pressure to ordinary pressure, and the front surface is irradiated with a flash light, thereby performing post deposition annealing (PDA) on the high dielectric constant film. Since the pressure is reduced once to be lower than atmospheric pressure and then returned to ordinary pressure, a chamber's oxygen concentration is lowered remarkably during the PDA. This restricts an increase in thickness of the silicon oxide film underlying the high dielectric constant film by oxygen taken in during the PDA.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 10, 2019
    Inventors: Takayuki AOYAMA, Hikaru KAWARAZAKI, Masashi FURUKAWA, Shinichi KATO, Kazuhiko FUSE, Hideaki TANIMURA
  • Patent number: 10424483
    Abstract: A metal film is deposited on a front surface of a semiconductor wafer of silicon. After the semiconductor wafer is received in a chamber, the pressure in the chamber is reduced to a pressure lower than atmospheric pressure. Thereafter, nitrogen gas is supplied into the chamber to return the pressure in the chamber to ordinary pressure, and the front surface of the semiconductor wafer is irradiated with a flash of light, so that a silicide that is a compound of the metal film and silicon is formed. The oxygen concentration in the chamber is significantly lowered during the formation of the silicide because the pressure in the chamber is reduced once to the pressure lower than atmospheric pressure and then returned to the ordinary pressure. This suppresses the increase in resistance of the silicide resulting from the entry of oxygen in the atmosphere in the chamber into defects near the interface between the metal film and a base material.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: September 24, 2019
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Takayuki Aoyama, Hikaru Kawarazaki, Masashi Furukawa, Kazuhiko Fuse, Hideaki Tanimura, Shinichi Kato
  • Publication number: 20190267250
    Abstract: A gate electrode made of polysilicon is formed on a surface of a semiconductor wafer for manufacture of a field effect transistor. The polysilicon is implanted with a dopant. Flash irradiation from flash lamps is performed on the surface of the semiconductor wafer immediately after the temperature of the semiconductor wafer reaches a preheating temperature due to irradiation with light from halogen lamps, and the halogen lamps are turned off immediately after the flash irradiation. The surface of the semiconductor wafer including the gate electrode of polysilicon is heated to the preheating temperature or above for a short time period, so that grain growth of the polysilicon is restrained. As a result, this restrains crystal grain boundaries of the polysilicon from decreasing to sufficiently allow the dopant to diffuse by way of the grain boundaries, thereby achieving a reduction in resistance of the polysilicon.
    Type: Application
    Filed: January 24, 2019
    Publication date: August 29, 2019
    Inventors: Hideaki Tanimura, Kazuhiko Fuse
  • Publication number: 20190244817
    Abstract: Hydrogen annealing for heating a semiconductor wafer on which a thin film containing a dopant is deposited to an annealing temperature under an atmosphere containing hydrogen is performed. A native oxide film is inevitably formed between the thin film containing the dopant and the semiconductor wafer, however, by performing hydrogen annealing, the dopant atoms diffuse relatively easily in the native oxide film and accumulate at the interface between the front surface of the semiconductor wafer and the native oxide film. Subsequently, the semiconductor wafer is preheated to a preheating temperature under a nitrogen atmosphere, and then, flash heating treatment in which the front surface of the semiconductor wafer is heated to a peak temperature for less than one second is performed. The dopant atoms are diffused and activated in a shallow manner from the front surface of the semiconductor wafer, thus, the low-resistance and extremely shallow junction is obtained.
    Type: Application
    Filed: December 26, 2018
    Publication date: August 8, 2019
    Inventors: Kazuhiko FUSE, Hikaru Kawarazaki, Hideaki Tanimura, Shinichi Kato
  • Patent number: 10347512
    Abstract: Light is applied for preheating from a halogen lamp to a lower surface of a semiconductor wafer supported on a susceptor within a chamber. Thereafter, flash light is applied for flash heating from a flash lamp to an upper surface of the semiconductor wafer. High-temperature treatment gas heated by a heater is supplied into the chamber to preheat a structure inside the chamber including a susceptor before heat treatment for an initial semiconductor wafer of a lot starts. By raising the temperature of the structure inside the chamber to a temperature substantially equivalent to a temperature of the structure during steady treatment, all semiconductor wafers constituting the lot are supportable on the susceptor maintained at a constant temperature without the necessity of dummy running. Accordingly, a temperature history is equalized for all the semiconductor wafers.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: July 9, 2019
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Hideaki Tanimura, Kazuhiko Fuse
  • Publication number: 20190164789
    Abstract: A semiconductor wafer to be treated is heated at a first preheating temperature ranging from 100 to 200° C. while a pressure in a chamber housing the semiconductor wafer is reduced to a pressure lower than an atmospheric pressure. After the semiconductor wafer is preheated to increase the temperature into a second preheating temperature ranging from 500 to 700° C. while the pressure in the chamber is restored to a pressure higher than the reduced pressure, a flash lamp emits a flashlight to a surface of the semiconductor wafer. Heating the semiconductor wafer at the first preheating temperature that is a relatively low temperature enables, for example, the moisture absorbed on the surface of the semiconductor wafer in trace amounts to be desorbed from the surface, and also enables the flash heating treatment to be performed with oxygen derived from such absorption removed as much as possible.
    Type: Application
    Filed: April 4, 2017
    Publication date: May 30, 2019
    Inventors: Takayuki AOYAMA, Shinichi KATO, Kazuhiko FUSE, Hikaru KAWARAZAKI, Masashi FURUKAWA, Hideaki TANIMURA, Akitsugu UEDA
  • Publication number: 20190109007
    Abstract: A metal film is deposited on a front surface of a semiconductor wafer of silicon. After the semiconductor wafer is received in a chamber, the pressure in the chamber is reduced to a pressure lower than atmospheric pressure. Thereafter, nitrogen gas is supplied into the chamber to return the pressure in the chamber to ordinary pressure, and the front surface of the semiconductor wafer is irradiated with a flash of light, so that a silicide that is a compound of the metal film and silicon is formed. The oxygen concentration in the chamber is significantly lowered during the formation of the silicide because the pressure in the chamber is reduced once to the pressure lower than atmospheric pressure and then returned to the ordinary pressure. This suppresses the increase in resistance of the silicide resulting from the entry of oxygen in the atmosphere in the chamber into defects near the interface between the metal film and a base material.
    Type: Application
    Filed: December 3, 2018
    Publication date: April 11, 2019
    Inventors: Takayuki AOYAMA, Hikaru KAWARAZAKI, Masashi FURUKAWA, Kazuhiko FUSE, Hideaki TANIMURA, Shinichi KATO