Patents by Inventor Hidehiko Sugita

Hidehiko Sugita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230032865
    Abstract: A vehicle park lock control method is presented with range positions including a P-range position and an N-range position in each of which a driving force is prevented from being transmitted to a driving wheel of a vehicle. A park lock mechanism is activated when in the P-range position. An operator is allowed to select whether or not to cause the park lock mechanism to be activated in response to key-off operation when in the N-range position. In response to continuous shifting of a range selector to one or more specific ones of the range positions, the park lock mechanism is prevented from being activated in response to key-off operation when in the N-range position.
    Type: Application
    Filed: December 26, 2019
    Publication date: February 2, 2023
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Kenji KOSHIBA, Hidehiko SUGITA, Yasuhiro KONISHI
  • Patent number: 9030136
    Abstract: A motor controlling apparatus including an inverter, a voltage detector, a rotational speed detector, a command value calculating component, an inverter controller, a state detector and an offsetting component. The inverter converts direct-current power to alternating-current power supplied to a motor. The voltage detector detects a direct-current voltage, and the rotational speed detector detects a rotational speed of the motor. The calculating component calculates current and torque command values, and motor rotational speed. The controller provides a control signal to control the inverter based on the current command value. The state detector detects a control state of the inverter, and the offsetting component offsets the detected voltage or rotational speed by an offset amount. The calculating component modifies the current command value based on the offset detected voltage or rotational speed to increase on a negative side a d-axis current command value included in the current command value.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: May 12, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hidehiko Sugita, Ken Ito
  • Publication number: 20130141023
    Abstract: A motor controlling apparatus including an inverter, a voltage detector, a rotational speed detector, a command value calculating component, an inverter controller, a state detector and an offsetting component. The inverter converts direct-current power to alternating-current power supplied to a motor. The voltage detector detects a direct-current voltage, and the rotational speed detector detects a rotational speed of the motor. The calculating component calculates current and torque command values, and motor rotational speed. The controller provides a control signal to control the inverter based on the current command value. The state detector detects a control state of the inverter, and the offsetting component offsets the detected voltage or rotational speed by an offset amount. The calculating component modifies the current command value based on the offset detected voltage or rotational speed to increase on a negative side a d-axis current command value included in the current command value.
    Type: Application
    Filed: September 7, 2011
    Publication date: June 6, 2013
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hidehiko Sugita, Ken Ito
  • Patent number: 7729842
    Abstract: A vehicle includes an internal combustion engine that drives a first set of wheels, a generator, wherein the generator is powered by the internal combustion engine, a inverter connected to an output of the generator, an AC motor connected to an output of the inverter, and a controller, wherein the controller controls the generator, the inverter and the AC motor. The AC motor drives a second set of wheels. Power output by the generator is controlled according to a desired torque output for the second set of wheels. The controller calculates a potential power based upon the current status of the generator and controls the AC motor by the inverter based on the smaller of the desired torque and the potential power output of the generator.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: June 1, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Hidehiko Sugita
  • Patent number: 7531974
    Abstract: A motor control device is disclosed that reduces the shock caused by torque increase during switching output of a motor's power generator from PWM wave voltage driving to square-wave voltage driving. Switching of PWM wave voltage driving and square-wave voltage driving is determined based on rotation speed of the motor and a torque instruction value. When switching from PWM wave voltage driving to square-wave voltage driving occurs, the voltage output of the power generator is reduced. When generated voltage V drops below a specified threshold voltage, PWM wave voltage driving is switched to square-wave driving.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: May 12, 2009
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hideaki Ohtsuka, Hidehiko Sugita
  • Patent number: 7495411
    Abstract: An object of the present invention is to provide a controller for an electric four-wheel-drive vehicle, which is capable of minimizing torque changes and consuming excessive power even when the excessive power is generated by a generator. A motor control unit causes an AC motor to generate desired torque by controlling an inverter. When the power generated by the generator exceeds the power consumed by the inverter and AC motor to generate excessive power, a current command determination unit in the motor control unit consumes the excessive power by increasing a loss in the AC motor.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: February 24, 2009
    Assignees: Hitachi, Ltd., Nissan Motor Co., Ltd.
    Inventors: Satoru Kaneko, Shiho Izumi, Tatsuyuki Yamamoto, Kenta Katsuhama, Shigeru Akaishi, Yasuo Matsunaga, Hidehiko Sugita
  • Publication number: 20080297087
    Abstract: A motor control device is disclosed that reduces the shock caused by torque increase during switching output of a motor's power generator from PWM wave voltage driving to square-wave voltage driving. Switching of PWM wave voltage driving and square-wave voltage driving is determined based on rotation speed of the motor and a torque instruction value. When switching from PWM wave voltage driving to square-wave voltage driving occurs, the voltage output of the power generator is reduced. When generated voltage V drops below a specified threshold voltage, PWM wave voltage driving is switched to square-wave driving.
    Type: Application
    Filed: December 14, 2005
    Publication date: December 4, 2008
    Applicant: NISSAN MOTOR CO., LTD
    Inventors: Hideaki Ohtsuka, Hidehiko Sugita
  • Patent number: 7441616
    Abstract: A generated power control system in which the magnetic field of a generator is controlled based on a target generated power so as to perform the appropriate generation control. Preferably, the generated power control system is used in a hybrid vehicle having a generator configured to be driven by an internal combustion engine that drives a first wheel and an AC motor that drives a second wheel not driven by the internal combustion engine with an inverter arranged to supply generated power from the generator to the AC motor. Basically, the generated power control basically calculates an AC motor power requirement of the AC motor and a target generated power to be generated by the generator based on the AC motor power requirement, and then controls the generated power generated by the generator by controlling a magnetic field of the generator based on the target generated power calculated.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: October 28, 2008
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hidehiko Sugita, Hideki Kawashima, Toshirou Matsuda, Yasuki Ishikawa
  • Publication number: 20070200529
    Abstract: An object of the present invention is to provide a controller for an electric four-wheel-drive vehicle, which is capable of minimizing torque changes and consuming excessive power even when the excessive power is generated by a generator. A motor control unit causes an AC motor to generate desired torque by controlling an inverter. When the power generated by the generator exceeds the power consumed by the inverter and AC motor to generate excessive power, a current command determination unit in the motor control unit consumes the excessive power by increasing a loss in the AC motor.
    Type: Application
    Filed: January 24, 2007
    Publication date: August 30, 2007
    Applicants: Hitachi, Ltd., Nissan Motor Co., Ltd.
    Inventors: Satoru Kaneko, Shiho Izumi, Tatsuyuki Yamamoto, Kenta Katsuhama, Shigeru Akaishi, Yasuo Matsunaga, Hidehiko Sugita
  • Publication number: 20060276941
    Abstract: A vehicle includes an internal combustion engine that drives a first set of wheels, a generator, wherein the generator is powered by the internal combustion engine, a inverter connected to an output of the generator, an AC motor connected to an output of the inverter, and a controller, wherein the controller controls the generator, the inverter and the AC motor. The AC motor drives a second set of wheels. Power output by the generator is controlled according to a desired torque output for the second set of wheels. The controller calculates a potential power based upon the current status of the generator and controls the AC motor by the inverter based on the smaller of the desired torque and the potential power output of the generator.
    Type: Application
    Filed: April 12, 2006
    Publication date: December 7, 2006
    Applicant: Nissan Motor Co., Ltd.
    Inventor: Hidehiko Sugita
  • Publication number: 20060138995
    Abstract: A generated power control system in which the magnetic field of a generator is controlled based on a target generated power so as to perform the appropriate generation control. Preferably, the generated power control system is used in a hybrid vehicle having a generator configured to be driven by an internal combustion engine that drives a first wheel and an AC motor that drives a second wheel not driven by the internal combustion engine with an inverter arranged to supply generated power from the generator to the AC motor. Basically, the generated power control basically calculates an AC motor power requirement of the AC motor and a target generated power to be generated by the generator based on the AC motor power requirement, and then controls the generated power generated by the generator by controlling a magnetic field of the generator based on the target generated power calculated.
    Type: Application
    Filed: December 5, 2005
    Publication date: June 29, 2006
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Hidehiko Sugita, Hideki Kawashima, Toshirou Matsuda, Yasuki Ishikawa