Patents by Inventor Hidekatsu Onose

Hidekatsu Onose has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9755014
    Abstract: A highly reliable semiconductor device with high withstand voltage is provided. As means therefor, an impurity concentration in a first JTE region is set to 4.4×1017 cm?3 or higher and 6×1017 cm?3 or lower and an impurity concentration in a second JTE region is set to 2×1017 cm?3 or lower in a case of a Schottky diode, and an impurity concentration in the first JTE region is set to 6×1017 cm?3 or higher and 8×1017 cm?3 or lower and an impurity concentration in the second JTE region is set to 2×1017 cm?3 or lower in a case of a junction barrier Schottky diode.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: September 5, 2017
    Assignee: HITACHI POWER SEMICONDUCTOR DEVICE, LTD.
    Inventors: Kazuhiro Mochizuki, Hidekatsu Onose, Norifumi Kameshiro, Natsuki Yokoyama
  • Publication number: 20170018605
    Abstract: A highly reliable semiconductor device with high withstand voltage is provided. As means therefor, an impurity concentration in a first JTE region is set to 4.4×1017 cm?3 or higher and 6×1017 cm?3 or lower and an impurity concentration in a second JTE region is set to 2×1017 cm?3 or lower in a case of a Schottky diode, and an impurity concentration in the first JTE region is set to 6×1017 cm?3 or higher and 8×107 cm?3 or lower and an impurity concentration in the second JTE region is set to 2×1017 cm?3 or lower in a case of a junction barrier Schottky diode.
    Type: Application
    Filed: September 28, 2016
    Publication date: January 19, 2017
    Inventors: Kazuhiro MOCHIZUKI, Hidekatsu ONOSE, Norifumi KAMESHIRO, Natsuki YOKOYAMA
  • Patent number: 9478605
    Abstract: A highly reliable semiconductor device with high withstand voltage is provided. As means therefor, an impurity concentration in a first JTE region is set to 4.4×1017 cm?3 or higher and 6×1017 cm?3 or lower and an impurity concentration in a second JTE region is set to 2×1017 cm?3 or lower in a case of a Schottky diode, and an impurity concentration in the first JTE region is set to 6×1017 cm?3 or higher and 8×1017 cm?3 or lower and an impurity concentration in the second JTE region is set to 2×1017 cm?3 or lower in a case of a junction barrier Schottky diode.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: October 25, 2016
    Assignee: Hitachi Power Semiconductor Device, Ltd.
    Inventors: Kazuhiro Mochizuki, Hidekatsu Onose, Norifumi Kameshiro, Natsuki Yokoyama
  • Publication number: 20160005810
    Abstract: A highly reliable semiconductor device with high withstand voltage is provided. As means therefor, an impurity concentration in a first JTE region is set to 4.4×1017 cm?3 or higher and 6×1017 cm?3 or lower and an impurity concentration in a second JTE region is set to 2×1017 cm?3 or lower in a case of a Schottky diode, and an impurity concentration in the first JTE region is set to 6×1017 cm?3 or higher and 8×1017 cm?3 or lower and an impurity concentration in the second JTE region is set to 2×1017 cm?3 or lower in a case of a junction barrier Schottky diode.
    Type: Application
    Filed: December 10, 2013
    Publication date: January 7, 2016
    Inventors: Kazuhiro MOCHIZUKI, Hidekatsu ONOSE, Norifumi KAMESHIRO, Natsuki YOKOYAMA
  • Patent number: 8816355
    Abstract: For suggesting a structure capable of achieving both a low start-up voltage and high breakdown voltage, a SiC vertical diode includes a cathode electrode, an n++ cathode layer, an n? drift layer on the n++ cathode layer, a pair of p+ regions, an n+ channel region formed between the n? drift layer and the p+ region and sandwiched between the pair of p+ regions, n++ anode regions and an anode electrode formed on the n++ anode regions and the p+ regions.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: August 26, 2014
    Assignee: Hitachi, Ltd.
    Inventor: Hidekatsu Onose
  • Patent number: 8508258
    Abstract: A driver circuit that lowers the dependence of the loss in the wide gap semiconductor device upon the temperature is provided. A gate driver circuit for voltage driven power semiconductor switching device includes a power semiconductor switching device, a driver circuit for supplying a drive signal to a gate terminal of the switching device with reference to an emitter control terminal or a source control terminal of the switching device, and a unit for detecting a temperature of the switching device. The temperature of the power semiconductor switching device is detected, and a gate drive voltage or a gate drive resistance value is changed based on the detected temperature.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: August 13, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Katsumi Ishikawa, Sunao Funakoshi, Kozo Sakamoto, Hidekatsu Onose
  • Patent number: 8227831
    Abstract: A semiconductor device having a junction FET having improved characteristics is provided. The semiconductor device has a junction FET as a main transistor and has a MISFET as a transistor for control. The junction FET has a first gate electrode, a first source electrode, and a first drain electrode. The MISFET has a second gate electrode, a second source electrode, and a second drain electrode. The MISFET is an n-channel type MISFET and has electric characteristics of an enhancement mode MISFET. The second gate electrode and the second drain electrode of the MISFET are connected to each other by short-circuiting. The first gate electrode of the junction FET and the second source electrode of the MISFET are connected to each other by short-circuiting.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: July 24, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Hidekatsu Onose
  • Patent number: 8049223
    Abstract: A junction FET having a large gate noise margin is provided. The junction FET comprises an n? layer forming a drift region of the junction FET formed over a main surface of an n+ substrate made of silicon carbide, a p+ layer forming a gate region formed in contact with the n? layer forming the drift region and a gate electrode provided in an upper layer of the n+ substrate. The junction FET further incorporates pn diodes formed over the main surface of the n+ substrate and electrically connecting the p+ layer forming the gate region and the gate electrode.
    Type: Grant
    Filed: May 25, 2008
    Date of Patent: November 1, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Haruka Shimizu, Hidekatsu Onose
  • Publication number: 20110248286
    Abstract: For suggesting a structure capable of achieving both a low start-up voltage and high breakdown voltage, a SiC vertical diode includes a cathode electrode, an n++ cathode layer, an n? drift layer on the n++ cathode layer, a pair of p+ regions, an n+ channel region formed between the n? drift layer and the p+ region and sandwiched between the pair of p+ regions, n++ anode regions and an anode electrode formed on the n++ anode regions and the p+ regions.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 13, 2011
    Inventor: Hidekatsu ONOSE
  • Patent number: 7906796
    Abstract: In a bipolar device, such as transistor or a thyristor, the emitter layer or the anode layer is formed of two high-doped and low-doped layers, a semiconductor region for suppressing recombination comprising an identical semiconductor having an impurity density identical with that of the low-doped layer is present being in contact with a base layer or a gate layer and a surface passivation layer, and the width of the semiconductor region for suppressing recombination is defined equal with or longer than the diffusion length of the carrier. This provides, among other things, an effect of attaining reduction in the size of the bipolar transistor or improvement of the switching frequency of the thyristor without deteriorating the performance.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: March 15, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Kazuhiro Mochizuki, Hidekatsu Onose, Natsuki Yokoyama
  • Publication number: 20100224885
    Abstract: A semiconductor device having a junction FET having improved characteristics is provided. The semiconductor device has a junction FET as a main transistor and has a MISFET as a transistor for control. The junction FET has a first gate electrode, a first source electrode, and a first drain electrode. The MISFET has a second gate electrode, a second source electrode, and a second drain electrode. The MISFET is an n-channel type MISFET and has electric characteristics of an enhancement mode MISFET. The second gate electrode and the second drain electrode of the MISFET are connected to each other by short-circuiting. The first gate electrode of the junction FET and the second source electrode of the MISFET are connected to each other by short-circuiting.
    Type: Application
    Filed: March 2, 2010
    Publication date: September 9, 2010
    Inventor: Hidekatsu ONOSE
  • Patent number: 7768066
    Abstract: A UMOSFET is capable of reducing a threshold voltage and producing a large saturation current. A typical UMOSFET according to the present invention includes: an N+ type SiC substrate constituting a drain layer; an N? type SiC layer that is in contact with the drain layer and constitutes a drift layer; a P type body layer formed on the drift layer and being a semiconductor layer; an N+ type SiC layer constituting a source layer; a trench extending from the source layer to a predetermined location placed in the drift layer; a P type electric field relaxation region provided around and outside a bottom portion of the trench; and a channel region extending from the N+ type source layer to the P type electric field relaxation region and having an impurity concentration higher than that of the N? type drift layer and lower than that of the P type body layer.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: August 3, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Hidekatsu Onose, Hiroyuki Takazawa
  • Publication number: 20090057685
    Abstract: In a mesa type bipolar transistor or a thyristor, since carriers injected from an emitter layer or an anode layer to a base layer or a gate layer diffuse laterally and are recombined, reduction in the size and improvement for the switching frequency is difficult. In the invention, the emitter layer or the anode layer is formed of two high-doped and low-doped layers, a semiconductor region for suppressing recombination comprising an identical semiconductor having an impurity density identical with that of the low-doped layer is present being in contact with a base layer or a gate layer and a surface passivation layer, and the width of the semiconductor region for suppressing recombination is defined equal with or longer than the diffusion length of the carrier. This provides an effect of attaining reduction in the size of the bipolar transistor or improvement of the switching frequency of the thyristor without deteriorating the performance.
    Type: Application
    Filed: July 21, 2008
    Publication date: March 5, 2009
    Inventors: Kazuhiro MOCHIZUKI, Hidekatsu Onose, Natsuki Yokoyama
  • Publication number: 20090032821
    Abstract: A UMOSFET is capable of reducing a threshold voltage and producing a large saturation current. A typical UMOSFET according to the present invention includes: an N+ type SiC substrate constituting a drain layer; an N? type SiC layer that is in contact with the drain layer and constitutes a drift layer; a P type body layer formed on the drift layer and being a semiconductor layer; an N+ type SiC layer constituting a source layer; a trench extending from the source layer to a predetermined location placed in the drift layer; a P type electric field relaxation region provided around and outside a bottom portion of the trench; and a channel region extending from the N+ type source layer to the P type electric field relaxation region and having an impurity concentration higher than that of the N? type drift layer and lower than that of the P type body layer.
    Type: Application
    Filed: July 24, 2008
    Publication date: February 5, 2009
    Inventors: Hidekatsu Onose, Hiroyuki Takazawa
  • Publication number: 20090014719
    Abstract: A junction FET having a large gate noise margin is provided. The junction FET comprises an n? layer forming a drift region of the junction FET formed over a main surface of an n+ substrate made of silicon carbide, a p+ layer forming a gate region formed in contact with the n? layer forming the drift region and a gate electrode provided in an upper layer of the n+ substrate. The junction FET further incorporates pn diodes formed over the main surface of the n+ substrate and electrically connecting the p+ layer forming the gate region and the gate electrode.
    Type: Application
    Filed: May 25, 2008
    Publication date: January 15, 2009
    Inventors: Haruka Shimizu, Hidekatsu Onose
  • Publication number: 20070252178
    Abstract: The present invention can maintain a blocking state, even at a low gate bias voltage, in a diode-containing type of junction FET, and achieves a large saturation current. The junction FET includes: an n+ SiC substrate 10 as a drain layer; an n? SiC layer 11 contiguous to the drain layer as a drift layer; an n+ SiC layer 12 formed on the drift layer as a source layer; trench grooves formed ranging from the source layer to a required depth of the drift layer and part of the drift layer as a channel region; and p-type polycrystalline Si formed in the trench grooves as gate regions. The gate region at one side of the channel is electrically shorted to a source electrode to form a p? emitter of a diode.
    Type: Application
    Filed: April 26, 2007
    Publication date: November 1, 2007
    Inventor: Hidekatsu ONOSE
  • Publication number: 20070221994
    Abstract: A driver circuit that lowers the dependence of the loss in the wide gap semiconductor device upon the temperature is provided. A gate driver circuit for voltage driven power semiconductor switching device includes a power semiconductor switching device, a driver circuit for supplying a drive signal to a gate terminal of the switching device with reference to an emitter control terminal or a source control terminal of the switching device, and a unit for detecting a temperature of the switching device. The temperature of the power semiconductor switching device is detected, and a gate drive voltage or a gate drive resistance value is changed based on the detected temperature.
    Type: Application
    Filed: January 25, 2007
    Publication date: September 27, 2007
    Inventors: Katsumi Ishikawa, Sunao Funakoshi, Kozo Sakamoto, Hidekatsu Onose
  • Patent number: 7256453
    Abstract: A structure is provided that ensures a low on-resistance and a better blocking effect. In a lateral type SIT (Static Induction Transistor) in which a first region is used as a p+ gate and a gate electrode is formed on the bottom of the first region, the structure is built such that the p+ gate and an n+ source are contiguous. An insulating film is formed on the surface of an n? channel, and an auxiliary gate electrode is formed on the insulating film. In addition, the auxiliary gate electrode and the source electrode are shorted.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: August 14, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Hidekatsu Onose, Atsuo Watanabe
  • Publication number: 20070114574
    Abstract: An object of the present invention is to achieve both the high withstand voltage and the low on-resistance in a polycrystalline Si embedded gate SiC junction FET. n+ —SiC is formed as a drain layer; and n? —SiC which contacts an n+ drain layer is formed as a drift layer. By using n+ —SiC, which is formed on an n? drift layer, as a source layer, and by forming a trench from an n+ source layer up to a position having the specified depth of the n? drift layer, part of the n? drift layer is used as a channel region. As a result, in a junction FET including, as a gate region, p-type polycrystalline Si that is embedded in the trench, at least a side wall of the channel region contacts the p-type polycrystalline Si gate region without using oxidation film.
    Type: Application
    Filed: November 15, 2006
    Publication date: May 24, 2007
    Inventor: Hidekatsu Onose
  • Publication number: 20050218424
    Abstract: A semiconductor switching device for an inverter includes a first conductivity type, low impurity concentration, semiconductor substrate having a band gap equal to or greater than 2.0 eV, a first conductivity type first region formed in a first plane of the substrate having a resistance lower than the substrate, a first electrode formed in another plane of the first region, a first conductivity type second region formed in a second plane of the substrate, and a second electrode formed on the second region. A trench is formed in the second plane, a control region is formed from a bottom of the trench into the substrate and a control electrode of a different conductivity type is formed on the control region. The second electrode is formed over the control electrode through an insulator film, and the control electrode is formed on the trench sidewalls so the control region contacts the second region.
    Type: Application
    Filed: May 24, 2005
    Publication date: October 6, 2005
    Inventors: Hidekatsu Onose, Hideo Homma, Atsuo Watanabe