Patents by Inventor Hidetoshi Yoshiuchi

Hidetoshi Yoshiuchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8904859
    Abstract: A gas separation and detection tool for performing in situ analysis of borehole fluid is described. The tool comprises a sampling chamber for a downhole fluid. The sample chamber comprises a detector cell with an opening. The tool also comprises a gas separation module for taking a gas from the downhole fluid. The gas separation module comprises a membrane located in the opening, a support for holding the membrane, and a sealant applied between the housing and the membrane or support. Moreover, the tool comprises a gas detector for sensing the gas.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: December 9, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Jimmy Lawrence, Tim G. J. Jones, Kentaro Indo, Tsutomu Yamate, Noriyuki Matsumoto, Michael M. Toribio, Hidetoshi Yoshiuchi, Andrew Meredith, Nathan S. Lawrence, Li Jiang, Go Fujisawa, Oliver C. Mullins
  • Patent number: 8297351
    Abstract: Subterranean sensing devices configured or designed for downhole use to sense a local condition in the well. The sensing devices comprise one or more transistor having at least one carbon nanotube field effect transistor (CNT FET) configured or designed for operation downhole, within a borehole.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: October 30, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Hidetoshi Yoshiuchi, Tsutomu Yamate, John Ullo, Kazuhiko Matsumoto
  • Publication number: 20120137764
    Abstract: A gas separation and detection tool for performing in situ analysis of borehole fluid is described. The tool comprises a sampling chamber for a downhole fluid. The sample chamber comprises a detector cell with an opening. The tool also comprises a gas separation module for taking a gas from the downhole fluid. The gas separation module comprises a membrane located in the opening, a support for holding the membrane, and a sealant applied between the housing and the membrane or support. Moreover, the tool comprises a gas detector for sensing the gas.
    Type: Application
    Filed: January 19, 2012
    Publication date: June 7, 2012
    Inventors: Jimmy Lawrence, Tim G. J. Jones, Kentaro Indo, Tsutomu Yamate, Noriyuki Matsumoto, Michael M. Toribio, Hidetoshi Yoshiuchi, Andrew Meredith, Nathan S. Lawrence, Li Jiang, Go Fujisawa, Oliver C. Mullins
  • Publication number: 20120118558
    Abstract: Subterranean sensing devices configured or designed for downhole use to sense a local condition in the well. The sensing devices comprise one or more transistor having at least one carbon nanotube field effect transistor (CNT FET) configured or designed for operation downhole, within a borehole.
    Type: Application
    Filed: December 10, 2008
    Publication date: May 17, 2012
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: HIDETOSHI YOSHIUCHI, TSUTOMU YAMATE, JOHN ULLO, KAZUHIKO MATSUMOTO
  • Publication number: 20100050761
    Abstract: A gas separation and detection tool for performing in situ analysis of borehole fluid is described. A separation system such as a membrane is employed to separate one or more target gasses from the borehole fluid. The separated gas may be detected by reaction with another material or spectroscopy. When spectroscopy is employed, a test chamber defined by a housing is used to hold the gas undergoing test. Various techniques may be employed to protect the gas separation system from damage due to pressure differential. For example, a separation membrane may be integrated with layers that provide strength and rigidity. The integrated membrane separation may include one or more of a water impermeable layer, gas selective layer, inorganic base layer and metal support layer. The gas selective layer itself can also function as a water impermeable layer. The metal support layer enhances resistance to differential pressure. Alternatively, the chamber may be filled with a liquid or solid material.
    Type: Application
    Filed: August 26, 2008
    Publication date: March 4, 2010
    Applicant: SchlumbergerTechnology Corporation
    Inventors: Jimmy Lawrence, Timothy G.J. Jones, Kentaro Indo, Tsutomu Yamate, Noriyuki Matsumoto, Michael Toribio, Hidetoshi Yoshiuchi, Andrew Meredith, Nathan S. Lawrence, Li Jiang, Go Fujisawa, Oliver C. Mullins