Patents by Inventor Hilde De Witte

Hilde De Witte has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7629270
    Abstract: A nitrogen precursor that has been activated by exposure to a remotely excited species is used as a reactant to form nitrogen-containing layers. The remotely excited species can be, e.g., N2, Ar, and/or He, which has been excited in a microwave radical generator. Downstream of the microwave radical generator and upstream of the substrate, the flow of excited species is mixed with a flow of NH3. The excited species activates the NH3. The substrate is exposed to both the activated NH3 and the excited species. The substrate can also be exposed to a precursor of another species to form a compound layer in a chemical vapor deposition. In addition, already-deposited layers can be nitrided by exposure to the activated NH3 and to the excited species, which results in higher levels of nitrogen incorporation than plasma nitridation using excited N2 alone, or thermal nitridation using NH3 alone, with the same process temperatures and nitridation durations.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: December 8, 2009
    Assignee: ASM America, Inc.
    Inventors: Johan Swerts, Hilde De Witte, Jan Willem Maes, Christophe F. Pomarede, Ruben Haverkort, Yuet Mei Wan, Marinus J. De Blank, Cornelius A. Van Der Jeugd, Jacobus Johannes Beulens
  • Publication number: 20060110943
    Abstract: A nitrogen precursor that has been activated by exposure to a remotely excited species is used as a reactant to form nitrogen-containing layers. The remotely excited species can be, e.g., N2, Ar, and/or He, which has been excited in a microwave radical generator. Downstream of the microwave radical generator and upstream of the substrate, the flow of excited species is mixed with a flow of NH3. The excited species activates the NH3. The substrate is exposed to both the activated NH3 and the excited species. The substrate can also be exposed to a precursor of another species to form a compound layer in a chemical vapor deposition. In addition, already-deposited layers can be nitrided by exposure to the activated NH3 and to the excited species, which results in higher levels of nitrogen incorporation than plasma nitridation using excited N2 alone, or thermal nitridation using NH3 alone, with the same process temperatures and nitridation durations.
    Type: Application
    Filed: August 24, 2005
    Publication date: May 25, 2006
    Inventors: Johan Swerts, Hilde De Witte, Jan Maes, Christophe Pomarede, Ruben Haverkort, Yuet Wan, Marinus De Blank, Cornelius Van Der Jeugd, Jacobus Beulens