Patents by Inventor Hiraku Hirabayashi

Hiraku Hirabayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230251331
    Abstract: This sensor unit includes a base having a substantially-rectangular planar shape including a first side and a second side that are substantially orthogonal to each other, and a plurality of first sensors provided on the base and arranged on a first axis. The first axis is substantially parallel to the first side and passes through a center position of the base.
    Type: Application
    Filed: March 8, 2023
    Publication date: August 10, 2023
    Applicant: TDK Corporation
    Inventors: Kunihiro Ueda, Yoshimitsu Wada, Hiraku Hirabayashi, Kazuma Yamawaki, Tsuyoshi Umehara
  • Publication number: 20230243899
    Abstract: A magnetic sensor includes a magnetic sensor chip that includes a magnetoresistive effect element and a sealed part. The magnetoresistive effect element includes a free layer and a pinned layer. The sealed part has a first surface and a second surface, which is opposite the first surface. The shape of the sealed part in the plan view from the first surface side is substantially quadrilateral. The substantially quadrilateral shape has a first side and a second side, which are substantially parallel to each other. In the plan view, from the first surface side of the sealed part, the magnetization direction of the pinned layer, in a state in which the external magnetic field is not applied on the magnetoresistive effect element, is inclined with respect to an approximately straight line found through the least squares method using a plurality of points arbitrarily set on the first side.
    Type: Application
    Filed: April 12, 2023
    Publication date: August 3, 2023
    Inventors: Yuta SAITO, Hiraku HIRABAYASHI, Yoshihiro KUDO
  • Patent number: 11703551
    Abstract: A magnetic field detection device, containing a) a first soft magnetic body containing a1) a first plate including a first surface having a first outer edge; and a2) a first protrusion disposed directly or indirectly on the first surface of the first plate at a first arrangement position set back from the first outer edge, the first protrusion including a first tip on an opposite side to the first surface; and b) a magnetic detector provided in a vicinity of the first tip, wherein the magnetic detector has a magnetic sensing direction along the first surface, and the first protrusion is capable of bending a direction of a first magnetic flux, which comes into the first plate, along the first surface.
    Type: Grant
    Filed: April 26, 2022
    Date of Patent: July 18, 2023
    Assignee: TDK CORPORATION
    Inventors: Masaki Nagata, Kazuya Watanabe, Keisuke Uchida, Kohei Honma, Hiraku Hirabayashi
  • Patent number: 11703358
    Abstract: A magnetic sensor includes first to fourth resistors, a power supply port, a ground port, a first output port, and a second output port. The first resistor and the second resistor are located in a first region and connected in series via a first connection point connected to the first output port. The third resistor and the fourth resistor are located in a second region and connected in series via a second connection point connected to the second output port, at least a part of the second region being located at a position different from the first region in a direction parallel to an X direction. The first and second resistors are located between the third and fourth resistors in a direction parallel to a Y direction.
    Type: Grant
    Filed: April 5, 2022
    Date of Patent: July 18, 2023
    Assignee: TDK CORPORATION
    Inventors: Tsuyoshi Umehara, Hiraku Hirabayashi, Yongfu Cai
  • Publication number: 20230204630
    Abstract: A magnetic sensor device includes a first detection circuit that generates a first detection signal, a coil through which a feedback current is passed to generate a cancellation magnetic field, a second detection circuit that generates a second detection signal having a correspondence with a value of the feedback current, and a control circuit that controls the feedback current. In a closed-loop operation, the control circuit controls the feedback current so that the first detection signal has a constant value. In an open-loop operation, the control circuit maintains the feedback current at a constant value.
    Type: Application
    Filed: February 17, 2023
    Publication date: June 29, 2023
    Applicant: TDK CORPORATION
    Inventors: Yuta SAITO, Hiraku HIRABAYASHI
  • Patent number: 11686788
    Abstract: A magnetic sensor device includes at least one magnetic sensor and a support. A center of gravity of an element layout area of the at least one magnetic sensor is deviated from a center of gravity of a reference plane of the support. The at least one magnetic sensor includes four resistor sections constituted by a plurality of magnetoresistive elements. Magnetization of a free layer in each of two of the resistor sections includes a component in a third magnetization direction. The magnetization of a free layer in each of the other two resistor sections includes a component in a fourth magnetization direction opposite to the third magnetization direction.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: June 27, 2023
    Assignee: TDK CORPORATION
    Inventors: Norikazu Ota, Hiraku Hirabayashi, Kazuma Yamawaki, Shuhei Miyazaki, Kazuya Watanabe
  • Patent number: 11674822
    Abstract: A position detection device includes a first position detector, a second position detector, and a signal generator. The first position detector includes a first magnetic field generation unit, a second magnetic field generation unit, and a first magnetic sensor. The second position detector includes a third magnetic field generation unit, a fourth magnetic field generation unit, and a second magnetic sensor. The positions of the second and fourth magnetic field generation units vary in response to variations in a detection-target position. The signal generator generates a position detection signal, which is the sum of a first detection signal generated by the first magnetic sensor and a second detection signal generated by the second magnetic sensor. Each of the first and second position detectors includes a bias magnetic field generation unit.
    Type: Grant
    Filed: June 2, 2020
    Date of Patent: June 13, 2023
    Assignee: TDK CORPORATION
    Inventors: Tsuyoshi Umehara, Hayato Miyashita, Keisuke Uchida, Hiraku Hirabayashi
  • Patent number: 11675028
    Abstract: A magnetic sensor comprises a magnetoresistive effect element including a first side surface and a second side surface facing in opposite directions along a first axis and a first end surface and a second end surface facing in opposite directions along a second axis substantially orthogonal to the first axis. The sensor has a sensitivity axis extending in a direction of the first axis, a first yoke unit provided adjacent to the first side surface of the magnetoresistive effect element, and a first bias magnetic field generation unit provided adjacent to the first end surface of the magnetoresistive effect element. The first bias magnetic field generation unit is provided to be capable of applying a bias magnetic field on the magnetoresistive effect element and the first yoke unit.
    Type: Grant
    Filed: October 24, 2022
    Date of Patent: June 13, 2023
    Assignee: TDK Corporation
    Inventors: Kenichi Takano, Tsuyoshi Umehara, Yuta Saito, Hiraku Hirabayashi
  • Patent number: 11656301
    Abstract: A magnetic sensor includes a magnetic sensor chip that includes a magnetoresistive effect element and a sealed part. The magnetoresistive effect element includes a free layer and a pinned layer. The sealed part has a first surface and a second surface, which is opposite the first surface. The shape of the sealed part in the plan view from the first surface side is substantially quadrilateral. The substantially quadrilateral shape has a first side and a second side, which are substantially parallel to each other. In the plan view, from the first surface side of the sealed part, the magnetization direction of the pinned layer, in a state in which the external magnetic field is not applied on the magnetoresistive effect element, is inclined with respect to an approximately straight line found through the least squares method using a plurality of points arbitrarily set on the first side.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: May 23, 2023
    Assignee: TDK Corporation
    Inventors: Yuta Saito, Hiraku Hirabayashi, Yoshihiro Kudo
  • Publication number: 20230152396
    Abstract: An inspection apparatus includes a stage having a placing surface, a first magnetic field generator, and a second magnetic field generator. The first magnetic field generator is configured to be changeable in orientation and to singly generate a first magnetic field. The second magnetic field generator is configured to be changeable in orientation and to singly generate a second magnetic field. The first and second magnetic field generators are configured to cooperatively generate a composite magnetic field in cooperation.
    Type: Application
    Filed: November 7, 2022
    Publication date: May 18, 2023
    Applicant: TDK CORPORATION
    Inventors: Kazuya WATANABE, Hiraku HIRABAYASHI
  • Patent number: 11650270
    Abstract: The magnetic sensor can prevent an increase of a positional detection error of a subject/object even in the case of applying an external magnetic field with a magnetic field intensity exceeding a predetermined range. A magnetic sensor is equipped with a magnetoresistive effect element (MR element) 11 that can detect an external magnetic field and a soft magnetic body shield 12. The soft magnetic body shield(s) 12 are/is positioned above and/or below the MR element 11 in a side view, and the size of the MR element 11 is physically included within a perimeter of the soft magnetic body shield 12.
    Type: Grant
    Filed: November 29, 2021
    Date of Patent: May 16, 2023
    Assignee: TDK Corporation
    Inventors: Keisuke Uchida, Hiraku Hirabayashi
  • Patent number: 11630165
    Abstract: This sensor unit includes a base having a substantially-rectangular planar shape including a first side and a second side that are substantially orthogonal to each other, and a plurality of first sensors provided on the base and arranged on a first axis. The first axis is substantially parallel to the first side and passes through a center position of the base.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: April 18, 2023
    Assignee: TDK CORPORATION
    Inventors: Kunihiro Ueda, Yoshimitsu Wada, Hiraku Hirabayashi, Kazuma Yamawaki, Tsuyoshi Umehara
  • Publication number: 20230103619
    Abstract: An MR element includes a first magnetic layer, a second magnetic layer, and a nonmagnetic layer disposed between the first magnetic layer and the second magnetic layer. The first magnetic layer has a magnetic shape anisotropy set in a first reference direction, and has a magnetization whose direction changes depending on an external magnetic field, the magnetization being oriented in a first magnetization direction in a state where the external magnetic field is not applied. The second magnetic layer has a magnetic shape anisotropy set in a second reference direction, and has a magnetization whose direction changes depending on the external magnetic field, the magnetization being oriented in a second magnetization direction in a state where the external magnetic field is not applied.
    Type: Application
    Filed: September 29, 2022
    Publication date: April 6, 2023
    Applicant: TDK CORPORATION
    Inventors: Daichi TAKANO, Norikazu OTA, Hiraku HIRABAYASHI, Kazuya WATANABE
  • Patent number: 11619659
    Abstract: A magnetic sensor device includes a first detection circuit that generates a first detection signal, a coil through which a feedback current is passed to generate a cancellation magnetic field, a second detection circuit that generates a second detection signal having a correspondence with a value of the feedback current, and a control circuit that controls the feedback current. In a closed-loop operation, the control circuit controls the feedback current so that the first detection signal has a constant value. In an open-loop operation, the control circuit maintains the feedback current at a constant value.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: April 4, 2023
    Assignee: TDK CORPORATION
    Inventors: Yuta Saito, Hiraku Hirabayashi
  • Publication number: 20230099490
    Abstract: A magnetic field detection apparatus includes a magnetoresistive effect element and a helical coil. The magnetoresistive effect element includes a magnetoresistive effect film extending in a first axis direction. The helical coil includes a parallel connection including first and second parts extending in a second axis direction inclined with respect to the first axis direction. The first and second parts are adjacent to each other in a third axis direction and coupled to each other in parallel. The helical coil is wound around the magnetoresistive effect element while extending along the third axis direction. The magnetoresistive effect film overlaps the first and second parts in a fourth axis direction orthogonal to the second and third axis directions. The helical coil is configured to be supplied with a current and thereby configured to generate an induction magnetic field to be applied to the magnetoresistive effect film in the third axis direction.
    Type: Application
    Filed: December 8, 2022
    Publication date: March 30, 2023
    Applicant: TDK CORPORATION
    Inventors: Norikazu OTA, Kenzo MAKINO, Hiraku HIRABAYASHI
  • Publication number: 20230089204
    Abstract: A magnetic sensor includes a first insulating layer, a second insulating layer, a third insulating layer, a lower coil element located on an opposite side of the first insulating layer from the second insulating layer, and a second MR element. The second MR element includes a magnetization pinned layer and a free layer. The magnetization pinned layer and the free layer are located on an opposite side of the third insulating layer from the second insulating layer. The first and third insulating layers each contain a first insulating material. The second insulating layer contains a second insulating material.
    Type: Application
    Filed: August 25, 2022
    Publication date: March 23, 2023
    Applicant: TDK CORPORATION
    Inventors: Keisuke TAKASUGI, Kenzo MAKINO, Hiraku HIRABAYASHI, Masanori SAKAI
  • Publication number: 20230088756
    Abstract: A magnetic sensor device includes a first detection circuit, a second detection circuit, and a processor. The processor is configured to execute first generation processing for generating a first initial detection value, second generation processing for generating a second initial detection value, first correction processing, second correction processing, and determination processing. The first correction processing is processing for correcting the first initial detection value and updating the first initial detection value. The second correction processing is processing for correcting the second initial detection value and updating the second initial detection value. The processor executes the determination processing after alternately executing the first correction processing and the second correction processing.
    Type: Application
    Filed: September 20, 2022
    Publication date: March 23, 2023
    Applicant: TDK CORPORATION
    Inventors: Norikazu OTA, Shinichirou MOCHIZUKI, Kazuya WATANABE, Hiraku HIRABAYASHI
  • Publication number: 20230091757
    Abstract: A magnetic sensor includes an insulating layer, a coil element disposed on the insulating layer, and a first insulating film. The insulating layer includes a first inclined surface and a second inclined surface. The coil element includes a first side surface and a second side surface. The first side surface includes a first portion and a second portion, the second portion being disposed at a position farther from a top surface of a substrate than a position where the first portion is disposed. The first portion is inclined so as to intersect with the first and second inclined surfaces, and is also inclined so as to be closer to the second side surface at positions closer to the top surface of the substrate. The first insulating film covers the first portion.
    Type: Application
    Filed: September 19, 2022
    Publication date: March 23, 2023
    Applicant: TDK CORPORATION
    Inventors: Keita KAWAMORI, Hiraku HIRABAYASHI, Hiromichi UMEHARA
  • Publication number: 20230093647
    Abstract: A magnetic sensor includes a substrate including a top surface; an insulating layer disposed on the substrate, the insulating layer including first and second inclined surfaces each inclined with respect to the top surface of the substrate; and an MR element. The MR element is disposed on the first inclined surface or the second inclined surface. The MR element includes a first side surface including a first portion and a second portion, the first portion and the second portion having different angles with respect to the first inclined surface or the second inclined surface.
    Type: Application
    Filed: September 19, 2022
    Publication date: March 23, 2023
    Applicant: TDK CORPORATION
    Inventors: Hidekazu KOJIMA, Kenzo MAKINO, Hiraku HIRABAYASHI
  • Publication number: 20230074404
    Abstract: A pair of bias magnets applies a bias magnetic field to the magneto-resistive effect element, the bias magnetic field having a component in a direction such that the component cancels the external magnetic field that is applied to the magneto-resistive effect element and a component that is perpendicular to the external magnetic field. The bias magnet has an elongate cross section in a plane that is parallel both to the external magnetic field and to the bias magnetic field. In a projection plane that is parallel to the cross section and onto which the bias magnets and the magneto-resistive effect element are projected, the bias magnet includes an element facing side that is opposite to the magneto-resistive effect element and that extends in a longitudinal direction. The bias magnet is magnetized in a direction that is perpendicular to the longitudinal direction. The element facing side is longer than other sides.
    Type: Application
    Filed: November 14, 2022
    Publication date: March 9, 2023
    Inventors: Yohei HIROTA, Hayato MIYASHITA, Tsuyoshi UMEHARA, Hiraku HIRABAYASHI