Patents by Inventor Hiroaki Toda

Hiroaki Toda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160076125
    Abstract: A non-oriented electrical steel sheet has a chemical composition that includes C: not more than 0.005%, Si: 1.5-4%, Mn: 1.0-5%, P: not more than 0.1%, S: not more than 0.005%, Al: not more than 3 mass %, N: not more than 0.005 mass %, Bi: not more than 0.0030% as mass % and the remainder being Fe and inevitable impurities or a chemical composition containing C: not more than 0.005%, Si: 1.5-4%, Mn: 1.0-5%, P: not more than 0.1%, S: not more than 0.005%, Al: not more than 3 mass %, N: not more than 0.005 mass %, Bi: not more than 0.0030% and further one or two of Ca: 0.0005-0.005% and Mg: 0.0002-0.005%, and is stably excellent in the high-frequency iron loss property even if a great amount of Mn is included.
    Type: Application
    Filed: March 12, 2014
    Publication date: March 17, 2016
    Inventors: Shinji Koseki, Yoshihiko Oda, Hiroaki Toda, Tatsuhiko Hiratani, Tadashi Nakanishi
  • Publication number: 20160042850
    Abstract: A non-oriented electrical steel sheet having a high magnetic flux density and a low anisotropy contains C: not more than 0.01 mass %, Si: 1-4 mass %, Mn: 0.05-3 mass %, P: 0.03-0.2 mass %, S: not more than 0.01 mass %, Al: not more than 0.004 mass %, N: not more than 0.005 mass %, As: not more than 0.003 mass %, and preferably further contains one or two of Sb: 0.001-0.1 mass % and Sn: 0.001-0.1 mass % or further contains one or two of Ca: 0.001-0.005 mass % and Mg: 0.001-0.005 mass %.
    Type: Application
    Filed: March 11, 2014
    Publication date: February 11, 2016
    Applicant: JFE STEEL CORPORATION
    Inventors: Yoshihiko Oda, Hiroaki Toda, Shinji Koseki, Tatsuhiko Hiratani, Tadashi Nakanishi, Tomoyuki Okubo
  • Publication number: 20160020007
    Abstract: A non-oriented electrical steel sheet has a chemical composition including C: not more than 0.005 mass %, Si: 1.5-4 mass %, Mn: 1-5 mass %, P: not more than 0.1 mass %, S: not more than 0.005 mass %, Al: not more than 3 mass %, N: not more than 0.005 mass %, Pb: not more than 0.001 mass % and the remainder being Fe and inevitable impurities or a chemical composition including C: not more than 0.005 mass %, Si: 1.5-4 mass %, Mn: 1-5 mass %, P: not more than 0.1 mass %, S: not more than 0.005 mass %, Al: not more than 3 mass %, N: not more than 0.005 mass %, Pb: not more than 0.0020 mass % and further one or two of Ca: 0.0005-0.007 mass % and Mg: 0.0002-0.005 mass %, and has a stable and excellent high-frequency iron loss property even when Mn content is high.
    Type: Application
    Filed: March 12, 2014
    Publication date: January 21, 2016
    Inventors: Yoshihiko Oda, Hiroaki Toda, Shinji Koseki, Tatsuhiko Hiratani, Tadashi Nakanishi
  • Publication number: 20150357101
    Abstract: A steel slab having a chemical composition including C: not more than 0.005 mass %, Si: not more than 4 mass %, Mn: 0.03-2 mass %, P: not more than 0.2 mass %, S: not more than 0.004 mass %, Al: not more than 2 mass %, N: not more than 0.004 mass %, Se: not more than 0.0010 mass % and the balance being Fe and inevitable impurities is subjected to hot rolling, cold rolling and recrystallization annealing up to 740° C. at an average heating rate of not less than 100° C./s to produce a semi-processed non-oriented electrical steel sheet being high in the magnetic flux density and low in the iron loss after stress relief annealing.
    Type: Application
    Filed: November 21, 2013
    Publication date: December 10, 2015
    Applicant: JFE STEEL CORPORATION
    Inventors: Yoshiaki ZAIZEN, Yoshihiko ODA, Hiroaki TODA, Kazuhiro HANAZAWA
  • Publication number: 20150348686
    Abstract: By using a hot-rolled steel sheet of a predetermined chemical composition, and annealing the hot-rolled steel sheet in nitrogen atmosphere at 1000° C. for 30 seconds, and then immersing in a solution of 7% HCl at 80° C. for 60 seconds to obtain a hot-rolled steel sheet having a pickling weight loss of 10 g/m2 or more and 35 g/m2 or less, it is possible to obtain a hot-rolled steel sheet for producing a non-oriented electrical steel sheet that not only has excellent magnetic properties such as iron loss properties and magnetic flux density, but also has reduced steel sheet surface defects and an excellent manufacturing yield.
    Type: Application
    Filed: January 16, 2014
    Publication date: December 3, 2015
    Inventors: Hiroaki TODA, Yoshiaki ZAIZEN, Tadashi NAKANISHI, Yoshihiko ODA
  • Publication number: 20150270042
    Abstract: The pickling loss when a hot-rolled steel sheet having a predetermined chemical composition is annealed at 1000 ° C. for 30 seconds in a nitrogen atmosphere and then immersed in a solution of 7 % HCI at 80 ° C. for 60 seconds is in a range of 40 g/m2 or more and 100 g/m2 or less. A hot-rolled steel sheet for production of a non-oriented electrical steel sheet with not only excellent magnetic properties such as iron loss and magnetic flux density but also excellent recyclability and steel sheet surface appearance can thus be obtained.
    Type: Application
    Filed: October 11, 2013
    Publication date: September 24, 2015
    Inventors: Hiroaki Toda, Yoshiaki Zaizen, Tadashi Nakanishi, Yoshihiko Oda
  • Publication number: 20150213928
    Abstract: According to the present invention, a high-strength electrical steel sheet that is suitable as rotor material for a high speed motor, steadily has high strength, and also has excellent magnetic properties can be obtained by setting the chemical composition thereof to include, by mass %, C: 0.005% or less, Si: more than 3.5% and 4.5% or less, Mn: 0.01% or more and 0.10% or less, Al: 0.005% or less, Ca: 0.0010% or more and 0.0050% or less, S: 0.0030% or less, and N: 0.0030% or less, Ca/S being 0.80 or more, the balance being Fe and incidental impurities, and by setting the sheet thickness to 0.40 mm or less, the non-recrystallized deformed microstructure to 10% or more and 70% or less, tensile strength (TS) to 600 MPa or more, and iron loss W10/400 to 30 W/kg or less.
    Type: Application
    Filed: August 8, 2012
    Publication date: July 30, 2015
    Applicant: JFE STEEL CORPORATION
    Inventors: Hiroaki Toda, Tadashi Nakanishi, Masaaki Kohno, Yoshihiko Oda
  • Publication number: 20150187475
    Abstract: A non-oriented electrical steel sheet has a chemical composition having C: not more than 0.005 mass %, Si: 2-7 mass %, Mn: 0.033 mass %, Al: not more than 3 mass %, P: not more than 0.2 mass %, S: not more than 0.005 mass %, N: not more than 0.005 mass %, Se: 0.0001˜0.0005 mass %, As: 0.0005˜0.005 mass % and the remainder being Fe and inevitable impurities, and an iron loss W15/50 in excitation at 50 Hz and 1.5 T of not more than 3.5 W/kg and a ratio (x/t) of amount of shear drop x (mm) to thickness t (mm) in punching of steel sheet of not more than 0.15 and is excellent in the iron loss property before punching and less in the deterioration of the iron loss property by punching.
    Type: Application
    Filed: August 1, 2013
    Publication date: July 2, 2015
    Inventors: Yoshiaki Zaizen, Yoshihiko Oda, Hiroaki Toda
  • Publication number: 20150136278
    Abstract: Provided is a method for stably obtaining a non-oriented electrical steel sheet with high magnetic flux density and excellent productivity, at a low cost by casting in a continuous casting machine a slab having a chemical composition including by mass %, C: 0.0050% or less, Si: more than 3.0% and 5.0% or less, Mn: 0.10% or less, Al: 0.0010% or less, P: more than 0.040% and 0.2% or less, N: 0.0040% or less, S: 0.0003% or more and 0.0050% or less, Ca: 0.0015% or more, and total of at least one element selected from Sn and Sb: 0.01% or more and 0.1% or less, balance including Fe and incidental impurities, subjecting the slab to heating, then subjecting the slab to hot rolling to obtain a hot rolled steel sheet, then subjecting the steel sheet to hot band annealing, pickling, subsequent single cold rolling to obtain a final sheet thickness, then subjecting the steel sheet to final annealing, wherein in the hot band annealing, soaking temperature is 900° C. or higher and 1050° C.
    Type: Application
    Filed: August 8, 2013
    Publication date: May 21, 2015
    Inventors: Tadashi Nakanishi, Yoshiaki Zaizen, Yoshihiko Oda, Hiroaki Toda
  • Publication number: 20150059929
    Abstract: A non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss is produced by hot rolling a steel slab including C: not more than 0.005 mass %, Si: not more than 4 mass %, Mn: 0.03˜3 mass %, Al: not more than 3 mass %, P: 0.03˜0.2 mass %, S: not more than 0.005 mass %, N: not more than 0.005 mass %, Ca: 0.0005˜0.01 mass %, provided that an atom ratio to S (Ca (mass %)/40)/(S (mass %)/32) is within a range of 0.5˜3.5, and the balance being Fe and incidental impurities, hot band annealing, cold rolling and then conducting recrystallization annealing by heating at an average temperature rising rate of not less than 100° C./sec up to at least 740° C.
    Type: Application
    Filed: March 7, 2013
    Publication date: March 5, 2015
    Inventors: Yoshiaki Zaizen, Yoshihiko Oda, Hiroaki Toda, Tadashi Nakanishi
  • Publication number: 20150027590
    Abstract: A method produces a high strength electrical steel sheet in which a cumulative rolling reduction ratio in rough rolling is 73.0% or more, in which in a hot band annealing step, an annealing condition is selected that satisfies an area ratio of recrystallized grains after hot band annealing of 100%, and a recrystallized grain size of 80 ?m to 300 ?m, under a condition where annealing temperature is 850° C. to 1000° C., and annealing duration is 10 seconds to 10 minutes, and in which in a final annealing step, an annealing condition is selected that satisfies an area ratio of recrystallized grains after the final annealing of 30% to 95%, and a length in the rolling direction of a connected non-recrystallized grain group of 2.5 mm or less, under a condition where annealing temperature is 670° C. to 800° C., and annealing duration is 2 seconds to 1 minute.
    Type: Application
    Filed: February 21, 2013
    Publication date: January 29, 2015
    Inventors: Tadashi Nakanishi, Yoshiaki Zaizen, Yoshihiko Oda, Hiroaki Toda
  • Publication number: 20140345751
    Abstract: A non-oriented electrical steel sheet has a chemical composition including, in mass %, C: 0.005% or less, Si: 5% or less, Al: 3% or less, Mn: 5% or less, S: 0.005% or less, P: 0.2% or less, N: 0.005% or less, Mo: 0.001 to 0.04%, Ti: 0.0030% or less, Nb: 0.0050% or less, V: 0.0050% or less, Zr: 0.0020% or less, one or both of Sb and Sn: 0.001 to 0.1% in total, and the balance being iron and incidental impurities.
    Type: Application
    Filed: September 26, 2012
    Publication date: November 27, 2014
    Inventors: Yoshihiko Oda, Hiroaki Toda, Tadashi Nakanishi, Yoshiaki Zaizen
  • Publication number: 20130263981
    Abstract: A non-oriented electrical steel sheet having a high magnetic flux density in a rolling direction of the steel sheet is produced by hot rolling a raw steel material including C: not more than 0.03 mass %, Si: not more than 4 mass %, Mn: 0.03˜3 mass %, Al: not more than 3 mass %, S: not more than 0.005 mass %, N: not more than 0.005 mass % and the balance being Fe and inevitable impurities, and then cold rolling and finishing annealing to produce a non-oriented electrical steel sheet, characterized in that a crystal grain size before the cold rolling is rendered into not more than 100 ?M and the finishing annealing is conducted by rapidly heating up to a temperature exceeding recrystallization temperature at an average temperature rising rate of not less than 100° C./sec.
    Type: Application
    Filed: December 16, 2011
    Publication date: October 10, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Yoshiaki Zaizen, Yoshihiko Oda, Hiroaki Toda
  • Publication number: 20130112319
    Abstract: A grain oriented electrical steel sheet is subjected to magnetic domain refinement by laser irradiation and has magnetic flux density B8 of at least 1.91 T, wherein the nitrogen content in the forsterite coating is 3.0 mass % or less. The grain oriented electrical steel sheet satisfies recent demand for iron loss reduction.
    Type: Application
    Filed: June 28, 2011
    Publication date: May 9, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Takeshi Omura, Hiroaki Toda, Hiroi Yamaguchi, Seiji Okabe
  • Publication number: 20130098508
    Abstract: A grain oriented electrical steel sheet (1) suppresses the content of Cr in the grain oriented electrical steel sheet to 0.1 mass % or less; (2) sets the coating weight of a forsterite coating, in terms of basis weight of oxygen therein, to at least 3.0 g/m2 and thickness of an anchor portion as a lower portion of forsterite coating to 1.5 ?m or less; and (3) controls setting the magnitude of deflection of a test specimen having length: 280 mm to at least 10 mm when the forsterite coating is provided on only one surface thereof and at least 20 mm when forsterite coating and the tension coating are provided on the surface.
    Type: Application
    Filed: June 28, 2011
    Publication date: April 25, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Hiroi Yamaguchi, Hiroaki Toda, Takeshi Omura, Seiji Okabe
  • Patent number: 7727644
    Abstract: In a grain-oriented electrical steel sheet having phosphate-based coatings, which contain no chromium and which impart a tension, on the surfaces of a steel sheet with ceramic underlying films therebetween, the coating amount of oxygen in the underlying film is 2.0 g/m2 or more and 3.5 g/m2 or less relative to both surfaces of the steel sheet. Consequently, a grain-oriented electrical steel sheet with a chromium-less coating is provided. The resulting steel sheet has coating properties at the same level as those of a steel sheet with chromium-containing coatings and realizes high hygroscopicity resistance and a low iron loss without variations.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: June 1, 2010
    Assignee: JFE Steel Corporation
    Inventors: Makoto Watanabe, Hiroaki Toda, Mineo Muraki
  • Publication number: 20080190520
    Abstract: In a grain-oriented electrical steel sheet having phosphate-based coatings, which contain no chromium and which impart a tension, on the surfaces of a steel sheet with ceramic underlying films therebetween, the coating amount of oxygen in the underlying film is 2.0 g/m2 or more and 3.5 g/m2 or less relative to both surfaces of the steel sheet. Consequently, a grain-oriented electrical steel sheet with a chromium-less coating is provided. The resulting steel sheet has coating properties at the same level as those of a steel sheet with chromium-containing coatings and realizes high hygroscopicity resistance and a low iron loss without variations.
    Type: Application
    Filed: November 7, 2005
    Publication date: August 14, 2008
    Applicant: JFE Steel Corporation, a corporation of Japan
    Inventors: Makoto Watanabe, Hiroaki Toda, Mineo Muraki
  • Patent number: 6602357
    Abstract: A grain oriented electrical steel sheet comprises metal part containing Si: about 2.5 to about 5.0 mass % and Cr: about 0.05 to about 1.0 mass %, and an insulation coating formed on a surface of the metal part. A tension imparted to the metal part in the rolling direction by the insulation coating is not smaller than about 3.0 MPa. Magnetic flux density B8 satisfies a specific relation formula. A plurality of linear strains or grooves are formed in a surface of the steel sheet and linearly extended at an angle of not larger than about 45° (in each direction) relative to a direction perpendicular to a rolling direction such that an interval D of the linear strains or grooves satisfies a specific relation formula depending on the Cr content. A grain oriented electrical steel sheet is thereby obtained which has lower iron loss after domain refining treatment than conventional values.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: August 5, 2003
    Assignee: Kawasaki Steel Corporation
    Inventors: Kunihiro Senda, Toshito Takamiya, Tadashi Nakanishi, Mitsumasa Kurosawa, Hiroaki Toda
  • Patent number: 6475304
    Abstract: Grain-oriented silicon steel sheet with Bi as an auxiliary inhibitor and a forsterite coating film having a Cr spinel oxide subscale of FeCr2O4 or FexMn1-xCr2O4 (0.6≦x≦1), made from a steel slab containing 0.005-0.20 wt % of Bi and 0.1-1.0 wt % of Cr.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: November 5, 2002
    Assignee: Kawasaki Steel Corporation
    Inventors: Hiroaki Toda, Kunihiro Senda, Mitsumasa Kurosawa, Makoto Watanabe, Atsuhito Honda
  • Publication number: 20020157734
    Abstract: A grain oriented electrical steel sheet comprises metal part containing Si: about 2.5 to about 5.0 mass % and Cr: about 0.05 to about 1.0 mass %, and an insulation coating formed on a surface of the metal part. A tension imparted to the metal part in the rolling direction by the insulation coating is not smaller than about 3.0 MPa. Magnetic flux density B8 satisfies a specific relation formula. A plurality of linear strains or grooves are formed in a surface of the steel sheet and linearly extended at an angle of not larger than about 45° (in each direction) relative to a direction perpendicular to a rolling direction such that an interval D of the linear strains or grooves satisfies a specific relation formula depending on the Cr content. A grain oriented electrical steel sheet is thereby obtained which has lower iron loss after domain refining treatment than conventional values.
    Type: Application
    Filed: January 24, 2002
    Publication date: October 31, 2002
    Inventors: Kunihiro Senda, Toshito Takamiya, Tadashi Nakanishi, Mitsumasa Kurosawa, Hiroaki Toda