Patents by Inventor Hirofumi TOKITA

Hirofumi TOKITA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240121959
    Abstract: A memory device includes alternating stacks of insulating layers and electrically conductive layers that are laterally spaced apart from each other along a second horizontal direction, laterally extend along the first horizontal direction through an inter-array region, a first memory array region and a second memory array region that is laterally spaced apart along the first horizontal direction from the memory array region by the inter-array region. Each electrically conductive layer within the alternating stacks has a respective bridge region having a respective strip width along the second horizontal direction within the inter-array region, and the strip width of a topmost electrically conductive layer in a first-tier alternating stack is smaller than the strip width of a topmost electrically conductive layer in a second-tier alternating stack which overlies the first-tier alternating stack.
    Type: Application
    Filed: July 6, 2023
    Publication date: April 11, 2024
    Inventors: Hirofumi TOKITA, Akihisa SAI
  • Publication number: 20240006310
    Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers, a first three-dimensional memory array located in a first memory array region, and a second three-dimensional memory array located in a second memory array region that is laterally spaced from the first memory array region along a first horizontal direction by an inter-array region. The alternating stack is laterally bounded by two trench fill structures that are laterally spaced apart along a second horizontal direction by an inter-trench spacing. The inter-array region includes a stepped cavity having vertical steps of the alternating stack that laterally extend along different horizontal directions. Multiple rows of contact via structures may contact different electrically conductive layers in the stepped cavity.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Tomohiro KUBO, Hirofumi TOKITA, Shiqian SHAO, Fumiaki TOYAMA
  • Publication number: 20240005990
    Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers, a first three-dimensional memory array located in a first memory array region, and a second three-dimensional memory array located in a second memory array region that is laterally spaced from the first memory array region along a first horizontal direction by an inter-array region. The alternating stack is laterally bounded by two trench fill structures that are laterally spaced apart along a second horizontal direction by an inter-trench spacing. The inter-array region includes a stepped cavity having vertical steps of the alternating stack that laterally extend along different horizontal directions. Multiple rows of contact via structures may contact different electrically conductive layers in the stepped cavity.
    Type: Application
    Filed: June 30, 2022
    Publication date: January 4, 2024
    Inventors: Hirofumi TOKITA, Tomohiro KUBO, Shiqian SHAO, Fumiaki TOYAMA
  • Patent number: 11398488
    Abstract: A three-dimensional memory device can include at least one alternating stack of insulating layers and electrically conductive layers located over a semiconductor material layer, memory stack structures vertically extending through the at least one alternating stack, and a vertical stack of dielectric plates interlaced with laterally extending portions of the insulating layers of the at least one alternating stack. A conductive via structure can vertically extend through each dielectric plate and the insulating layers, and can contact an underlying metal interconnect structure. Additionally or alternatively, support pillar structures can vertically extend through the vertical stack of dielectric plates and into an opening through the semiconductor material layer, and can contact lower-level dielectric material layers embedding the underlying metal interconnect structure to enhance structural support to the three-dimensional memory device during manufacture.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: July 26, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Takaaki Iwai, Yoshitaka Otsu, Hirofumi Tokita
  • Patent number: 11367736
    Abstract: A first-tier structure includes a first vertically alternating sequence of first continuous insulating layers and first continuous sacrificial material layers and a first-tier retro-stepped dielectric material portion overlying first stepped surfaces of the first vertically alternating sequence. A second vertically alternating sequence of second continuous insulating layers and second continuous sacrificial material layers is formed over the first-tier structure. A vertically alternating stack of insulating plates and dielectric material is formed over the first-tier retro-stepped dielectric material portion. Alternatively, dielectric pillar structures may be formed in lieu of the vertically alternating stack. After formation of memory stack structures, electrically conductive layers replace portions of the first and second continuous sacrificial material layers.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: June 21, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Hirofumi Tokita, Takayuki Maekura, Romain Mentek
  • Patent number: 11355506
    Abstract: A first-tier structure includes a first vertically alternating sequence of first continuous insulating layers and first continuous sacrificial material layers and a first-tier retro-stepped dielectric material portion overlying first stepped surfaces of the first vertically alternating sequence. A second vertically alternating sequence of second continuous insulating layers and second continuous sacrificial material layers is formed over the first-tier structure. A vertically alternating stack of insulating plates and dielectric material is formed over the first-tier retro-stepped dielectric material portion. Alternatively, dielectric pillar structures may be formed in lieu of the vertically alternating stack. After formation of memory stack structures, electrically conductive layers replace portions of the first and second continuous sacrificial material layers.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: June 7, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Hirofumi Tokita, Takayuki Maekura, Romain Mentek
  • Patent number: 11342245
    Abstract: A first-tier structure includes a first vertically alternating sequence of first continuous insulating layers and first continuous sacrificial material layers and a first-tier retro-stepped dielectric material portion overlying first stepped surfaces of the first vertically alternating sequence. A second vertically alternating sequence of second continuous insulating layers and second continuous sacrificial material layers is formed over the first-tier structure. Retro-stepped dielectric material portions are formed in each of the first-tier structure and the second-tier structure. After formation of memory stack structures, electrically conductive layers replace portions of the first and second continuous sacrificial material layers. Laterally-isolated contact via structures can be formed through the second-tier structure and a first-tier retro-stepped dielectric material portion on first electrically conductive layers in the first-tier structure.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: May 24, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Zhixin Cui, Hirofumi Tokita
  • Publication number: 20210384206
    Abstract: A three-dimensional memory device can include at least one alternating stack of insulating layers and electrically conductive layers located over a semiconductor material layer, memory stack structures vertically extending through the at least one alternating stack, and a vertical stack of dielectric plates interlaced with laterally extending portions of the insulating layers of the at least one alternating stack. A conductive via structure can vertically extend through each dielectric plate and the insulating layers, and can contact an underlying metal interconnect structure. Additionally or alternatively, support pillar structures can vertically extend through the vertical stack of dielectric plates and into an opening through the semiconductor material layer, and can contact lower-level dielectric material layers embedding the underlying metal interconnect structure to enhance structural support to the three-dimensional memory device during manufacture.
    Type: Application
    Filed: June 5, 2020
    Publication date: December 9, 2021
    Inventors: Takaaki IWAI, Yoshitaka OTSU, Hirofumi TOKITA
  • Publication number: 20210366920
    Abstract: A first-tier structure includes a first vertically alternating sequence of first continuous insulating layers and first continuous sacrificial material layers and a first-tier retro-stepped dielectric material portion overlying first stepped surfaces of the first vertically alternating sequence. A second vertically alternating sequence of second continuous insulating layers and second continuous sacrificial material layers is formed over the first-tier structure. A vertically alternating stack of insulating plates and dielectric material is formed over the first-tier retro-stepped dielectric material portion. Alternatively, dielectric pillar structures may be formed in lieu of the vertically alternating stack. After formation of memory stack structures, electrically conductive layers replace portions of the first and second continuous sacrificial material layers.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 25, 2021
    Inventors: Hirofumi TOKITA, Takayuki MAEKURA, Romain MENTEK
  • Publication number: 20210366924
    Abstract: A first-tier structure includes a first vertically alternating sequence of first continuous insulating layers and first continuous sacrificial material layers and a first-tier retro-stepped dielectric material portion overlying first stepped surfaces of the first vertically alternating sequence. A second vertically alternating sequence of second continuous insulating layers and second continuous sacrificial material layers is formed over the first-tier structure. A vertically alternating stack of insulating plates and dielectric material is formed over the first-tier retro-stepped dielectric material portion. Alternatively, dielectric pillar structures may be formed in lieu of the vertically alternating stack. After formation of memory stack structures, electrically conductive layers replace portions of the first and second continuous sacrificial material layers.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 25, 2021
    Inventors: Hirofumi TOKITA, Takayuki MAEKURA, Romain MENTEK
  • Publication number: 20210366808
    Abstract: A first-tier structure includes a first vertically alternating sequence of first continuous insulating layers and first continuous sacrificial material layers and a first-tier retro-stepped dielectric material portion overlying first stepped surfaces of the first vertically alternating sequence. A second vertically alternating sequence of second continuous insulating layers and second continuous sacrificial material layers is formed over the first-tier structure. Retro-stepped dielectric material portions are formed in each of the first-tier structure and the second-tier structure. After formation of memory stack structures, electrically conductive layers replace portions of the first and second continuous sacrificial material layers. Laterally-isolated contact via structures can be formed through the second-tier structure and a first-tier retro-stepped dielectric material portion on first electrically conductive layers in the first-tier structure.
    Type: Application
    Filed: July 6, 2020
    Publication date: November 25, 2021
    Inventors: Zhixin CUI, Hirofumi TOKITA
  • Patent number: 11139237
    Abstract: A method of forming a three-dimensional memory device includes forming a vertically alternating sequence of insulating layers and spacer material layers over a substrate, where the spacer material layers are formed as, or are subsequently replaced with, electrically conductive layers, forming multiple sets of stepped surfaces in terrace regions of the vertically alternating sequence, forming memory stack structures through memory array regions of the vertically alternating sequence, and forming a metal interconnect structure which electrically connects a portion of a topmost electrically conductive layer in the first memory array region and a portion of a topmost electrically conductive layer in the second memory array region, and which extends above a horizontal plane of the topmost electrically conductive layer in the first memory array region and a portion of a topmost electrically conductive layer in the second memory array region.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: October 5, 2021
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Shiqian Shao, Jee-Yeon Kim, Fumiaki Toyama, Hirofumi Tokita
  • Patent number: 11133252
    Abstract: A method of forming a three-dimensional memory device includes forming a vertically alternating sequence of insulating layers and spacer material layers over a substrate, such that the spacer material layers are formed as, or are subsequently replaced with, electrically conductive layers, iteratively performing a first set of non-offset layer patterning processing steps at least twice to form a first part of a terrace region including a set of stepped surfaces which extend in a first horizontal direction, and performing a second set of offset layer patterning processing steps to form a second part of the terrace region and to form a stepped vertical cross-sectional profile for patterned surfaces of the vertically alternating sequence along a second horizontal direction which is perpendicular to the first horizontal direction.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: September 28, 2021
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Koichi Ito, Yoshinobu Tanaka, Hirofumi Tokita
  • Patent number: 11114459
    Abstract: A three-dimensional memory device includes alternating stacks of insulating layers and electrically conductive layers located over a substrate, a first memory array region and a second memory array region that are laterally spaced apart along the first horizontal direction by an inter-array region therebetween, and memory stack structures extending through the alternating stacks in the first or second memory array region. Each of the alternating stacks includes a respective terrace region in which layers of a respective alternating stack have variable lateral extents within an area of the inter-array region, and a respective array interconnection region laterally offset from the respective terrace region and which continuously extends from the first memory array region to the second memory array region. Each of the alternating stacks has a width modulation along a second horizontal direction that is perpendicular to the first horizontal direction within the area of the inter-array region.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: September 7, 2021
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Takaaki Iwai, Hirofumi Tokita, Yoshitaka Otsu, Fumiaki Toyama, Yuki Mizutani
  • Publication number: 20210242128
    Abstract: A method of forming a three-dimensional memory device includes forming a vertically alternating sequence of insulating layers and spacer material layers over a substrate, such that the spacer material layers are formed as, or are subsequently replaced with, electrically conductive layers, iteratively performing a first set of non-offset layer patterning processing steps at least twice to form a first part of a terrace region including a set of stepped surfaces which extend in a first horizontal direction, and performing a second set of offset layer patterning processing steps to form a second part of the terrace region and to form a stepped vertical cross-sectional profile for patterned surfaces of the vertically alternating sequence along a second horizontal direction which is perpendicular to the first horizontal direction.
    Type: Application
    Filed: February 5, 2020
    Publication date: August 5, 2021
    Inventors: Koichi ITO, Yoshinobu TANAKA, Hirofumi TOKITA
  • Publication number: 20210134827
    Abstract: A three-dimensional memory device includes alternating stacks of insulating layers and electrically conductive layers located over a substrate, a first memory array region and a second memory array region that are laterally spaced apart along the first horizontal direction by an inter-array region therebetween, and memory stack structures extending through the alternating stacks in the first or second memory array region. Each of the alternating stacks includes a respective terrace region in which layers of a respective alternating stack have variable lateral extents within an area of the inter-array region, and a respective array interconnection region laterally offset from the respective terrace region and which continuously extends from the first memory array region to the second memory array region. Each of the alternating stacks has a width modulation along a second horizontal direction that is perpendicular to the first horizontal direction within the area of the inter-array region.
    Type: Application
    Filed: November 6, 2019
    Publication date: May 6, 2021
    Inventors: Takaaki IWAI, Hirofumi TOKITA, Yoshitaka OTSU, Fumiaki TOYAMA, Yuki MIZUTANI
  • Publication number: 20210057336
    Abstract: A method of forming a three-dimensional memory device includes forming a vertically alternating sequence of insulating layers and spacer material layers over a substrate, where the spacer material layers are formed as, or are subsequently replaced with, electrically conductive layers, forming multiple sets of stepped surfaces in terrace regions of the vertically alternating sequence, forming memory stack structures through memory array regions of the vertically alternating sequence, and forming a metal interconnect structure which electrically connects a portion of a topmost electrically conductive layer in the first memory array region and a portion of a topmost electrically conductive layer in the second memory array region, and which extends above a horizontal plane of the topmost electrically conductive layer in the first memory array region and a portion of a topmost electrically conductive layer in the second memory array region.
    Type: Application
    Filed: August 22, 2019
    Publication date: February 25, 2021
    Inventors: Shiqian SHAO, Jee-Yeon KIM, Fumiaki TOYAMA, Hirofumi TOKITA
  • Publication number: 20200402905
    Abstract: An alternating layer stack of insulating layers and sacrificial material layers is formed over a semiconductor substrate, and memory stack structures are formed through the vertically-alternating layer stack. A pair of unconnected barrier trenches or a moat trench is formed through the alternating stack concurrently with formation of backside trenches. Backside recesses are formed by isotropically etching the sacrificial material layers selective to the insulating layers while a dielectric liner covers the barrier trenches or the moat trench. A vertically alternating sequence of the insulating plates and the dielectric spacer plates is provided between the pair of barrier trenches or inside the moat trench. Electrically conductive layers are formed in the backside recesses. A first conductive via structure is formed through the vertically alternating sequence concurrently with formation of a second conductive via structure through a dielectric material portion adjacent to the alternating stack.
    Type: Application
    Filed: June 18, 2019
    Publication date: December 24, 2020
    Inventors: Yoshitaka OTSU, Kei NOZAWA, Naoto HOJO, Hirofumi TOKITA, Eiji HAYASHI, Masanori TERAHARA
  • Patent number: 10872857
    Abstract: An alternating layer stack of insulating layers and sacrificial material layers is formed over a semiconductor substrate, and memory stack structures are formed through the vertically-alternating layer stack. A pair of unconnected barrier trenches or a moat trench is formed through the alternating stack concurrently with formation of backside trenches. Backside recesses are formed by isotropically etching the sacrificial material layers selective to the insulating layers while a dielectric liner covers the barrier trenches or the moat trench. A vertically alternating sequence of the insulating plates and the dielectric spacer plates is provided between the pair of barrier trenches or inside the moat trench. Electrically conductive layers are formed in the backside recesses. A first conductive via structure is formed through the vertically alternating sequence concurrently with formation of a second conductive via structure through a dielectric material portion adjacent to the alternating stack.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: December 22, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Yoshitaka Otsu, Kei Nozawa, Naoto Hojo, Hirofumi Tokita, Eiji Hayashi, Masanori Terahara
  • Patent number: 10090399
    Abstract: The reliability of a semiconductor device having a nonvolatile memory is improved. The memory cell of the nonvolatile memory is of a split gate type, and has first and second n type semiconductor regions in a semiconductor substrate, a control electrode formed over the substrate between the semiconductor regions via a first insulation film, and a memory gate electrode formed over the substrate between the semiconductor regions via a second insulation film having a charge accumulation part. The SSI method is used for write to the memory cell. During the read operation of the memory cell, the first and second semiconductor regions function as source and drain regions, respectively. The first width of the first sidewall spacer formed adjacent to the side surface of the memory gate electrode is larger than the second width of the second sidewall spacer formed adjacent to the side surface of the control gate electrode.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: October 2, 2018
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Hirofumi Tokita, Tamotsu Ogata