Patents by Inventor Hiroie MATSUMOTO

Hiroie MATSUMOTO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11710644
    Abstract: An etching method includes: (a) providing a substrate including a silicon-containing film on a substrate support; (b) adjusting a temperature of the substrate support to ?20° C. or lower; (c) supplying a processing gas including a nitrogen-containing gas, into the chamber; (d) etching the silicon-containing film by using plasma generated from the processing gas. A recess is formed by etching the silicon-containing film, and a by-product containing silicon and nitrogen adheres to a side wall of the recess. The etching method further includes (e) setting at least one etching parameter of the temperature of the substrate support and the flow rate of the nitrogen-containing gas included in the processing gas, to adjust the width of the bottom of the recess according to an adhesion amount of the by-product, before (b).
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: July 25, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Takahiro Yokoyama, Taihei Matsuhashi, Masanori Hosoya, Hiroie Matsumoto
  • Publication number: 20220102159
    Abstract: An etching method includes: (a) providing a substrate including a silicon-containing film on a substrate support; (b) adjusting a temperature of the substrate support to ?20° C. or lower; (c) supplying a processing gas including a nitrogen-containing gas, into the chamber; (d) etching the silicon-containing film by using plasma generated from the processing gas. A recess is formed by etching the silicon-containing film, and a by-product containing silicon and nitrogen adheres to a side wall of the recess. The etching method further includes (e) setting at least one etching parameter of the temperature of the substrate support and the flow rate of the nitrogen-containing gas included in the processing gas, to adjust the width of the bottom of the recess according to an adhesion amount of the by-product, before (b).
    Type: Application
    Filed: September 29, 2021
    Publication date: March 31, 2022
    Applicant: Tokyo Electron Limited
    Inventors: Takahiro YOKOYAMA, Taihei MATSUHASHI, Masanori HOSOYA, Hiroie MATSUMOTO
  • Patent number: 9818610
    Abstract: A method for treating a substrate is disclosed. The method includes forming a film stack on the substrate, the film stack comprising an underlying layer, a coating layer disposed above the underlying layer, and a patterning layer disposed above the coating layer. In the method, portions of the patterning layer are removed to form sidewalls of the patterning layer and expose portions of the coating layer, a carbon-containing layer is deposited on the exposed portions of the coating layer and non-sidewall portions of the patterning layer, and the carbon-containing layer and a portion of the coating layer are removed to expose other portions of the coating layer and the patterning layer. The method further includes repeating the deposition and removal of the carbon-coating layer at least until portions of the underlying layer are exposed.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: November 14, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Hiroie Matsumoto, Andrew W. Metz, Yannick Feurprier, Katie Lutker-Lee
  • Publication number: 20170263443
    Abstract: A method for treating a substrate is disclosed. The method includes forming a film stack on the substrate, the film stack comprising an underlying layer, a coating layer disposed above the underlying layer, and a patterning layer disposed above the coating layer. In the method, portions of the patterning layer are removed to form sidewalls of the patterning layer and expose portions of the coating layer, a carbon-containing layer is deposited on the exposed portions of the coating layer and non-sidewall portions of the patterning layer, and the carbon-containing layer and a portion of the coating layer are removed to expose other portions of the coating layer and the patterning layer. The method further includes repeating the deposition and removal of the carbon-coating layer at least until portions of the underlying layer are exposed.
    Type: Application
    Filed: March 14, 2017
    Publication date: September 14, 2017
    Inventors: Hiroie Matsumoto, Andrew W. Metz, Yannick Feurprier, Katie Lutker-Lee
  • Patent number: 9607834
    Abstract: A method for etching an antireflective coating on a substrate is disclosed. The substrate comprises an organic layer, an antireflective coating layer disposed above the organic layer, and a photoresist layer disposed above the antireflective coating layer. The method includes patterning the photoresist layer to expose a non-masked portion of the antireflective coating layer and selectively depositing a carbon-containing layer on the non-masked portions of the antireflective coating layer and on non-sidewall portions of the patterned photoresist layer. The method further includes etching the film stack to remove the carbon-containing layer and to remove a partial thickness of the non-masked portions of the antireflective coating layer without reducing a thickness of the photoresist layer.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: March 28, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Hiroie Matsumoto, Andrew W. Metz, Yannick Feurprier, Katie Lutker-Lee
  • Publication number: 20160293405
    Abstract: A method for etching an antireflective coating on a substrate is disclosed. The substrate comprises an organic layer, an antireflective coating layer disposed above the organic layer, and a photoresist layer disposed above the antireflective coating layer. The method includes patterning the photoresist layer to expose a non-masked portion of the antireflective coating layer and selectively depositing a carbon-containing layer on the non-masked portions of the antireflective coating layer and on non-sidewall portions of the patterned photoresist layer. The method further includes etching the film stack to remove the carbon-containing layer and to remove a partial thickness of the non-masked portions of the antireflective coating layer without reducing a thickness of the photoresist layer.
    Type: Application
    Filed: April 1, 2016
    Publication date: October 6, 2016
    Inventors: Hiroie Matsumoto, Andrew W. Metz, Yannick Feurprier, Katie Lutker-Lee
  • Publication number: 20150287618
    Abstract: Provided are a plasma processing method and a plasma processing apparatus which may form a protective film on the surface of an etching stop layer and suppress clogging of openings of holes when etching an oxide layer are provided. The plasma processing method forms a plurality of holes having different depths in multi-layered films that include an oxide layer, a plurality of etching stop layers made of tungsten, and a mask layer. The plasma processing method includes an etching process in which a processing gas is supplied to generate plasma such that etching is performed from the top surface of the oxide layer to the plurality of etching stop layers so as to form hole having different depths in the oxide layer. Here, the processing gas includes a fluorocarbon-based gas, a rare gas, oxygen, and nitrogen.
    Type: Application
    Filed: June 23, 2015
    Publication date: October 8, 2015
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Hiroie MATSUMOTO, Kazuto OGAWA
  • Patent number: 9099285
    Abstract: Provided are a plasma processing method and a plasma processing apparatus which may form a protective film on the surface of an etching stop layer and suppress clogging of openings of holes when etching an oxide layer are provided. The plasma processing method forms a plurality of holes having different depths in multi-layered films that include an oxide layer, a plurality of etching stop layers made of tungsten, and a mask layer. The plasma processing method includes an etching process in which a processing gas is supplied to generate plasma such that etching is performed from the top surface of the oxide layer to the plurality of etching stop layers so as to form hole having different depths in the oxide layer. Here, the processing gas includes a fluorocarbon-based gas, a rare gas, oxygen, and nitrogen.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: August 4, 2015
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Hiroie Matsumoto, Kazuto Ogawa
  • Publication number: 20140120732
    Abstract: Provided are a plasma processing method and a plasma processing apparatus which may form a protective film on the surface of an etching stop layer and suppress clogging of openings of holes when etching an oxide layer are provided. The plasma processing method forms a plurality of holes having different depths in multi-layered films that include an oxide layer, a plurality of etching stop layers made of tungsten, and a mask layer. The plasma processing method includes an etching process in which a processing gas is supplied to generate plasma such that etching is performed from the top surface of the oxide layer to the plurality of etching stop layers so as to form hole having different depths in the oxide layer. Here, the processing gas includes a fluorocarbon-based gas, a rare gas, oxygen, and nitrogen.
    Type: Application
    Filed: October 28, 2013
    Publication date: May 1, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Hiroie MATSUMOTO, Kazuto OGAWA