Patents by Inventor Hiroki Kurihara

Hiroki Kurihara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11913367
    Abstract: There is provided an exhaust gas purifying catalyst including a substrate and catalyst portions. The substrate includes an inflow-side cells, outflow-side cells, and porous partition walls, each partition wall separating the inflow-side cell from the outflow-side cell. The catalyst portion includes: (group A) first catalyst portions, each first catalyst portion being provided on a surface of the partition wall that faces the inflow-side cell on an upstream side in an exhaust gas flow direction; and (group B) second catalyst portions being provided on a surface of the partition wall that faces the outflow-side cell on a downstream side in the exhaust gas flow direction. Each catalyst portion of one of group A and group B includes at least one oxidizing catalyst layer and at least one reducing catalyst layer, and each catalyst portion of the other of group A and group B includes at least one oxidizing catalyst layer and/or at least one reducing catalyst layer.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: February 27, 2024
    Assignees: Mitsui Mining & Smelting Co., Ltd., HONDA MOTOR CO., LTD.
    Inventors: Hiroki Kurihara, Yusuke Nagai, Shingo Akita, Yoshinori Endo, Takeshi Mori, Takayuki Watanabe, Tomoko Tsuyama
  • Patent number: 11745172
    Abstract: A substrate (11) of an exhaust gas purification catalyst (10) includes inflow-side cells (21), outflow-side cells (22), and porous partition walls (23), each separating the inflow-side cell and the outflow-side cell. Catalyst portions (14, 15) are provided on the surfaces of the partition walls that each face the inflow-side cell and/or the surfaces of the partition walls that each face the outflow-side cell. In a cross section vertical to an exhaust gas flow direction, the percentage of the total area of voids, each void satisfying the expression L/{2(?S)1/2}?1.1 (wherein L is the perimeter of the void in the cross section, and S is the area of the void in the cross section), is greater than 10% to 30% or less based on the apparent area of the catalyst portion present on the partition wall. The content of zirconium element in terms of oxide (amount of ZrO2) in the catalyst portions is from 35 mass % to 85 mass %.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: September 5, 2023
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Yusuke Nagai, Shingo Akita, Hiroki Kurihara, Yoshinori Endo
  • Publication number: 20230050366
    Abstract: An object of the present invention is to provide an exhaust gas purification system including a first exhaust gas treatment section provided upstream in an exhaust pathway of an internal-combustion engine, a second exhaust gas treatment section provided upstream in the exhaust pathway of the internal-combustion engine, wherein the exhaust gas purification system allows rhodium element contained in a catalyst layer of the second exhaust gas treatment section to efficiently exhibit the catalytic activity, and the present invention provides an exhaust gas purification system (1) configured to purify exhaust gas emitted from an internal-combustion engine, the exhaust gas purification system (1) including an exhaust gas path (2) through which exhaust gas flows, a first exhaust gas treatment section (3) provided upstream in the exhaust gas path (2), and a second exhaust gas treatment section (4) provided downstream in the exhaust gas path (2); wherein first catalyst layers of the first exhaust gas treatment section
    Type: Application
    Filed: January 13, 2021
    Publication date: February 16, 2023
    Inventors: Takashi BABA, Hiroki KURIHARA
  • Publication number: 20230029275
    Abstract: An object of the present invention is to provide an exhaust gas purification catalyst including a wall-flow substrate and a catalyst layer, and having an improved exhaust gas purification performance, and, in order to achieve such an object, the present invention provides an exhaust gas purification catalyst including: a wall-flow substrate, first catalyst layers; and second catalyst layers; wherein the first catalyst layers and the second catalyst layers satisfy the following expressions (1) to (3): L1<L2??(1) T1<T2??(2) WC1>WC2??(3) wherein L1 represents the length of the first catalyst layers, L2 represents the length of the second catalyst layers, T1 represents the thickness of the rising portions of the first catalyst layers, T2 represents the thickness of the rising portions of the second catalyst layers, WC1 represents the mass of the first catalyst layers per unit volume of the portion of the substrate provided with the first catalyst layers, and WC2 represents the mass of the second
    Type: Application
    Filed: December 17, 2020
    Publication date: January 26, 2023
    Inventors: Yusuke NAGAI, Shingo AKITA, Hiroki KURIHARA, Yoshinori ENDO
  • Publication number: 20220401939
    Abstract: A substrate (11) of an exhaust gas purification catalyst (10) includes inflow-side cells (21), outflow-side cells (22), and porous partition walls (23), each separating the inflow-side cell and the outflow-side cell. Catalyst portions (14, 15) are provided on the surfaces of the partition walls that each face the inflow-side cell and/or the surfaces of the partition walls that each face the outflow-side cell. In a cross section vertical to an exhaust gas flow direction, the percentage of the total area of voids, each void satisfying the expression L/{2(?S)1/2}?1.1 (wherein L is the perimeter of the void in the cross section, and S is the area of the void in the cross section), is greater than 10% to 30% or less based on the apparent area of the catalyst portion present on the partition wall. The content of zirconium element in terms of oxide (amount of ZrO2) in the catalyst portions is from 35 mass % to 85 mass %.
    Type: Application
    Filed: March 9, 2020
    Publication date: December 22, 2022
    Inventors: Yusuke NAGAI, Shingo AKITA, Hiroki KURIHARA, Yoshinori ENDO
  • Patent number: 11433377
    Abstract: A substrate (11) of an exhaust gas purification catalyst (10) includes inflow-side cells (21), outflow-side cells (22), and porous partition walls (23) each separating the inflow-side cell and the outflow-side cell. Catalyst portions (14, 15) are provided on surfaces of the partition walls that each face the inflow-side cell and/or surfaces of the partition walls that each face the outflow-side cell. In a cross section vertical to an exhaust gas flow direction, the percentage of the total area of voids, each void satisfying the expression L/{2(?S)1/2}?1.1, wherein L is the perimeter of the void in the cross section and S is the area of the void in the cross section, is from 3 to 10% based on the apparent area of the catalyst portion present on the partition wall.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: September 6, 2022
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Yusuke Nagai, Shingo Akita, Hiroki Kurihara, Yoshinori Endo
  • Publication number: 20220168710
    Abstract: A substrate (11) of an exhaust gas purification catalyst (10) includes inflow-side cells (21), outflow-side cells (22), and porous partition walls (23) each separating the inflow-side cell and the outflow-side cell. Catalyst portions (14, 15) are provided on surfaces of the partition walls that each face the inflow-side cell and/or surfaces of the partition walls that each face the outflow-side cell. In a cross section vertical to an exhaust gas flow direction, the percentage of the total area of voids, each void satisfying the expression L/{2(?S)1/2}?1.1, wherein L is the perimeter of the void in the cross section and S is the area of the void in the cross section, is from 3 to 10% based on the apparent area of the catalyst portion present on the partition wall.
    Type: Application
    Filed: March 9, 2020
    Publication date: June 2, 2022
    Inventors: Yusuke NAGAI, Shingo AKITA, Hiroki KURIHARA, Yoshinori ENDO
  • Patent number: 11266982
    Abstract: A substrate (11) of an exhaust gas purification catalyst (10) includes inflow-side cells (21), outflow-side cells (22), and porous partition walls (23), each porous partition wall separating the cells (21, 22) from each other. A first catalyst portions (14) is provided at least on a portion of a side of the partition wall (23) that faces the inflow-side cell (21), the portion being located on an upstream side in an exhaust gas flow direction, and a second catalyst portion (15) is provided at least on a portion of a side of the partition wall that faces the outflow-side cell, the portion being located on a downstream side in the exhaust gas flow direction.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: March 8, 2022
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Hiroki Kurihara, Yu Sakurada, Yusuke Nagai, Yoshinori Endo, Takeshi Nabemoto, Shingo Akita
  • Patent number: 11208931
    Abstract: In an exhaust gas purifying catalyst according to the present invention, a substrate includes inflow-side cells, outflow-side cells, and porous partition walls, each partition wall separating the inflow-side cell from the outflow-side cell. Catalyst portions include: first catalyst portions, each first catalyst portion being provided on a surface of the partition wall that faces the inflow-side cell on an upstream side in an exhaust gas flow direction, and second catalyst portions, each second catalyst portion being provided on a surface of the partition wall that faces the outflow-side cell on a downstream side, and the exhaust gas purifying catalyst satisfies the following expressions: IB1/IA×100?60%, IB2/IA×100?60%, IC1/IA×100?3%, and IC2/IA×100?3%, where IA, IB1, IB2, IC1, and IC2 represent pore volumes, definitions of which can be found in the specification.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: December 28, 2021
    Assignees: Mitsui Mining & Smelting Co., Ltd., HONDA MOTOR CO., LTD.
    Inventors: Hiroki Kurihara, Yusuke Nagai, Shingo Akita, Yoshinori Endo, Takeshi Mori, Takayuki Watanabe, Tomoko Tsuyama
  • Patent number: 11097260
    Abstract: A substrate (11) includes an inflow-side cell (21), an outflow-side cell (22), and a porous, gas-permeable partition wall (23) that separates the inflow-side cell (21) and the outflow-side cell (22) from each other, and also includes a first catalyst portion (14) that is provided on a side of the partition wall (23) that faces the inflow-side cell (21) at least at a portion in upstream side in an exhaust gas flow direction, and a second catalyst portion (15) that is provided on a side of the partition wall that faces the outflow-side cell at least at a portion in downstream side.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: August 24, 2021
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Hiroki Kurihara, Yu Sakurada, Yusuke Nagai, Yoshinori Endo, Takeshi Nabemoto, Shingo Akita
  • Publication number: 20210164377
    Abstract: There is provided an exhaust gas purifying catalyst including a substrate and catalyst portions. The substrate includes an inflow-side cells, outflow-side cells, and porous partition walls, each partition wall separating the inflow-side cell from the outflow-side cell. The catalyst portion includes: (group A) first catalyst portions, each first catalyst portion being provided on a surface of the partition wall that faces the inflow-side cell on an upstream side in an exhaust gas flow direction; and (group B) second catalyst portions being provided on a surface of the partition wall that faces the outflow-side cell on a downstream side in the exhaust gas flow direction. Each catalyst portion of one of group A and group B includes at least one oxidizing catalyst layer and at least one reducing catalyst layer, and each catalyst portion of the other of group A and group B includes at least one oxidizing catalyst layer and/or at least one reducing catalyst layer.
    Type: Application
    Filed: April 17, 2019
    Publication date: June 3, 2021
    Inventors: Hiroki KURIHARA, Yusuke NAGAI, Shingo AKITA, Yoshinori ENDO, Takeshi MORI, Takayuki WATANABE, Tomoko TSUYAMA
  • Publication number: 20210164378
    Abstract: In an exhaust gas purifying catalyst according to the present invention, a substrate includes inflow-side cells, outflow-side cells, and porous partition walls, each partition wall separating the inflow-side cell from the outflow-side cell. Catalyst portions include: first catalyst portions, each first catalyst portion being provided on a surface of the partition wall that faces the inflow-side cell on an upstream side in an exhaust gas flow direction, and second catalyst portions, each second catalyst portion being provided on a surface of the partition wall that faces the outflow-side cell on a downstream side, and the exhaust gas purifying catalyst satisfies the following expressions: IB1/IA×100?60%, IB2/IA×100?60%, IC1/IA×100?3%, and IC2/IA×100?3%, where IA, IB1, IB2, IC1, and IC2 represent pore volumes, definitions of which can be found in the specification.
    Type: Application
    Filed: April 17, 2019
    Publication date: June 3, 2021
    Inventors: Hiroki KURIHARA, Yusuke NAGAI, Shingo AKITA, Yoshinori ENDO, Takeshi MORI, Takayuki WATANABE, Tomoko TSUYAMA
  • Publication number: 20210039080
    Abstract: A substrate (11) of an exhaust gas purification catalyst (10) includes inflow-side cells (21), outflow-side cells (22), and porous partition walls (23), each porous partition wall separating the cells (21, 22) from each other. A first catalyst portions (14) is provided at least on a portion of a side of the partition wall (23) that faces the inflow-side cell (21), the portion being located on an upstream side in an exhaust gas flow direction, and a second catalyst portion (15) is provided at least on a portion of a side of the partition wall that faces the outflow-side cell, the portion being located on a downstream side in the exhaust gas flow direction.
    Type: Application
    Filed: March 19, 2019
    Publication date: February 11, 2021
    Applicant: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Hiroki KURIHARA, Yu SAKURADA, Yusuke NAGAI, Yoshinori ENDO, Takeshi NABEMOTO, Shingo AKITA
  • Publication number: 20210001315
    Abstract: A substrate (11) includes an inflow-side cell (21), an outflow-side cell (22), and a porous, gas-permeable partition wall (23) that separates the inflow-side cell (21) and the outflow-side cell (22) from each other, and also includes a first catalyst portion (14) that is provided on a side of the partition wall (23) that faces the inflow-side cell (21) at least at a portion in upstream side in an exhaust gas flow direction, and a second catalyst portion (15) that is provided on a side of the partition wall that faces the outflow-side cell at least at a portion in downstream side.
    Type: Application
    Filed: March 19, 2019
    Publication date: January 7, 2021
    Inventors: Hiroki KURIHARA, Yu SAKURADA, Yusuke NAGAI, Yoshinori ENDO, Takeshi NABEMOTO, Shingo AKITA
  • Patent number: 5750825
    Abstract: There is provided a mouse lacking the function of the endotheline-1 gene by insertion of another gene into the endotheline-1 gene.The mouse is useful for elucidation of the pathological physiology and causes of and development of therapies for cardiovascular diseases such as hypertension, arteriosclerosis and ischemic heart disease.
    Type: Grant
    Filed: April 24, 1995
    Date of Patent: May 12, 1998
    Assignee: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Yoshio Yazaki, Hiroki Kurihara, Yukiko Kurihara, Hiroshi Suzuki, Tatsuhiko Kodama
  • Patent number: 5747340
    Abstract: This invention provides a vector for expression of a nucleic acid cassette in bronchial epithelial and vascular endothelial cells comprising a segment of the 5'-flanking region of the preproendothelin-1 gene, upstream from the transcription start site, the first exon of the preproendothelin-1 gene, and a nucleic acid cassette, wherein the nucleic acid cassette is located within the first exon, in sequential and positional relationship for expression of the nucleic acid cassette.
    Type: Grant
    Filed: February 28, 1995
    Date of Patent: May 5, 1998
    Assignee: Syntex (U.S.A.) Inc.
    Inventors: Dror Harats, Hiroki Kurihara, Paula Nanette Belloni, Charles Elliott Sigal
  • Patent number: 4981950
    Abstract: Disclosed is a vasoconstrictor peptide called Endothelin having a molecular weight of 2,500.+-.300. Endothelin contains 21 amino acid residues, wherein four cysteines form two sets of S--S bond.In order to obtain the vasoconstrictor factors of the present invention, it is preferable to culture the endothelial cells collected from the vascular inner walls in a serum-free medium.The vasoconstrictor peptides of the present invention can be utilized as hypotension therapeutic agents or local vasoconstrictors to animals including humans.
    Type: Grant
    Filed: September 26, 1988
    Date of Patent: January 1, 1991
    Assignees: Takeda Chemical Ind., Ltd., Director-General of Agency of Industrial Science and Technology of Ministry of International Trade and Industry
    Inventors: Tomoh Masaki, Katsutoshi Goto, Sadao Kimura, Youji Mitsui, Yoshio Yazaki, Masashi Yanagisawa, Hiroki Kurihara