Patents by Inventor Hiromasa Tawarayama

Hiromasa Tawarayama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180205095
    Abstract: A fuel cell includes a MEA that includes a cathode, an anode, and a solid electrolyte layer disposed between the cathode and the anode, the solid electrolyte layer containing an ion-conducting solid oxide; at least one first porous metal body adjacent to at least one of the cathode and the anode and having a three-dimensional mesh-like skeleton; a second porous metal body stacked to be adjacent to the first porous metal body and having a three-dimensional mesh-like skeleton; and an interconnector adjacent to the second porous metal body. The first porous metal body has a pore size smaller than a pore size of the second porous metal body.
    Type: Application
    Filed: July 8, 2016
    Publication date: July 19, 2018
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro HIRAIWA, Masatoshi MAJIMA, Hiromasa TAWARAYAMA, Naho MIZUHARA, Takahiro HIGASHINO, Yohei NODA, Kazunari MIYAMOTO, Toshihiro YOSHIDA
  • Publication number: 20180205096
    Abstract: A fuel cell includes a MEA that includes a cathode, an anode, and a solid electrolyte layer disposed between the cathode and the anode, the solid electrolyte layer containing an ion-conducting solid oxide; at least one first porous metal body arranged to oppose at least one of the cathode and the anode; and an interconnector arranged to oppose the first porous metal body and having a gas supply port and a gas discharge port formed therein. The first porous metal body includes a porous metal body S that opposes the gas supply port and has a three-dimensional mesh-like skeleton, and a porous metal body H that has a three-dimensional mesh-like skeleton and is other than the porous metal body S. A porosity Ps of the porous metal body S and a porosity Ph of the porous metal body H satisfy a relationship: Ps<Ph.
    Type: Application
    Filed: July 8, 2016
    Publication date: July 19, 2018
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Chihiro HIRAIWA, Masatoshi MAJIMA, Hiromasa TAWARAYAMA, Naho MIZUHARA, Takahiro HIGASHINO, Yohei NODA, Kazunari MIYAMOTO, Toshihiro YOSHIDA
  • Publication number: 20180093318
    Abstract: A composite material including a first porous metal body having a three-dimensional mesh-like skeleton, a second porous metal body having a three-dimensional mesh-like skeleton, and a bonding portion formed by entanglement of the skeleton of the first porous metal body and the skeleton of the second porous metal body. The porosity of the first porous metal body may be different from the porosity of the second porous metal body.
    Type: Application
    Filed: January 18, 2016
    Publication date: April 5, 2018
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Chihiro HIRAIWA, Masatoshi MAJIMA, Hiromasa TAWARAYAMA, Naho MIZUHARA, Kazuki OKUNO, Takahiro HIGASHINO, Yohei NODA, Kazunari MIYAMOTO
  • Publication number: 20180037508
    Abstract: A solid electrolyte layer contains a proton conductor having a perovskite structure, the proton conductor being represented by formula (1): BaxZryCezM1?(y+z)O3?? (where element M is at least one selected from the group consisting of Y, Yb, Er, Ho, Tm, Gd, and Sc, 0.85?x<0.98, 0.70?y+z<1.00, a ratio of y/z is 0.5/0.5 to 1/0, and ? is an oxygen vacancy concentration).
    Type: Application
    Filed: August 25, 2015
    Publication date: February 8, 2018
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takahiro HIGASHINO, Yohei NODA, Chihiro HIRAIWA, Naho MIZUHARA, Hiromasa TAWARAYAMA, Hisao TAKEUCHI, Masatoshi MAJIMA
  • Publication number: 20180022655
    Abstract: A method for manufacturing a ceramic material includes a step of performing heat treatment in a reducing atmosphere on a ceramic material in which a metallic oxide is diffused in crystal grains, thereby to reduce the metallic oxide to deposit a metallic element at grain boundaries of the ceramic material.
    Type: Application
    Filed: December 24, 2015
    Publication date: January 25, 2018
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., KYOTO UNIVERSITY
    Inventors: Masatoshi MAJIMA, Hiromasa TAWARAYAMA, Chihiro HIRAIWA, Takahiro HIGASHINO, Yohei NODA, Naho MIZUHARA, Tetsuya UDA, Donglin HAN
  • Publication number: 20170373324
    Abstract: A method for producing an anode capable of increasing output of a solid oxide fuel cell is provided. The method for producing an anode for a solid oxide fuel cell includes a first step of shaping a mixture that contains a perovskite oxide having proton conductivity and a nickel compound and a second step of firing a shaped product, which has been obtained in the first step, in an atmosphere containing 50% by volume or more of oxygen at 1100° C. to 1350° C. so as to generate an anode.
    Type: Application
    Filed: July 21, 2015
    Publication date: December 28, 2017
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yohei NODA, Masatoshi MAJIMA, Hiromasa TAWARAYAMA, Naho MIZUHARA, Chihiro HIRAIWA, Takahiro HIGASHINO
  • Publication number: 20170317371
    Abstract: A cell structure includes a cathode, an anode, and a protonically conductive solid electrolyte layer between the cathode and the anode. The solid electrolyte layer contains a compound having a perovskite structure and containing zirconium, cerium, and a rare-earth element other than cerium. If the solid electrolyte layer has a thickness of T, the elemental ratio of zirconium to cerium at a position 0.25 T from a surface of the solid electrolyte layer opposite the cathode, ZrC/CeC, and the elemental ratio of zirconium to cerium at a position 0.25 T from a surface of the solid electrolyte layer opposite the anode, ZrA/CeA, satisfy ZrC/CeC>ZrA/CeA, and ZrC/CeC>1.
    Type: Application
    Filed: October 20, 2015
    Publication date: November 2, 2017
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takahiro HIGASHINO, Yohei NODA, Chihiro HIRAIWA, Naho MIZUHARA, Hiromasa TAWARAYAMA, Hisao TAKEUCHI, Masatoshi MAJIMA
  • Publication number: 20170133699
    Abstract: Provided are a membrane electrode assembly, including a solid electrolyte layer, an anode layer provided on one side of the solid electrolyte layer, and a cathode layer provided on the other side of the solid electrolyte layer, the anode layer being stacked on the solid electrolyte layer to be pressed thereagainst, the anode layer including a porous anode member having electrical conductivity; and a method for manufacturing the same.
    Type: Application
    Filed: June 23, 2015
    Publication date: May 11, 2017
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., KYUSHU UNIVERSITY, NATIONAL UNIVERSITY COPRORATION
    Inventors: Chihiro HIRAIWA, Masatoshi MAJIMA, Hiromasa TAWARAYAMA, Takahiro HIGASHINO, Yohei NODA, Naho MIZUHARA, Tatsumi ISHIHARA
  • Publication number: 20170098841
    Abstract: Provided is a porous current collector which is used for a fuel electrode and has a high gas reforming function and high durability. A porous current collector 9 is provided adjacent to a fuel electrode 4 of a fuel cell 101 that includes a solid electrolyte layer 2, the fuel electrode 4 disposed on one side of the solid electrolyte layer, and an air electrode 3 disposed on the other side. The porous current collector includes a porous metal body 1 and a first catalyst 20. The porous metal body has an alloy layer 12a at least on a surface thereof, the alloy layer containing nickel (Ni) and tin (Sn). The first catalyst, which is in the form of particles, is supported on a surface of the alloy layer, the surface facing pores of the porous metal body, and is capable of processing a carbon component contained in a fuel gas that flows inside the pores.
    Type: Application
    Filed: February 23, 2015
    Publication date: April 6, 2017
    Inventors: Takahiro HIGASHINO, Masatoshi MAJIMA, Hiromasa TAWARAYAMA, Naho MIZUHARA, Kazuki OKUNO, Chihiro HIRAIWA, Yohei NODA, Masahiro KATO
  • Publication number: 20170077526
    Abstract: A gas decomposition device 100 includes one or two or more membrane electrode assemblies 5, each including a solid electrolyte layer 2, an anode layer 3 stacked on a first side of the solid electrolyte layer 2, and a cathode layer 4 stacked on a second side of the solid electrolyte layer; and porous current collectors 8a, 8b, and 8c including continuous pores 1b, the membrane electrode assemblies being stacked with the porous current collector, the solid electrolyte layer being composed of a proton-conducting solid electrolyte, the porous current collectors including porous metal bodies 1, each of the porous metal bodies 1 including an alloy layer 12a having corrosion resistance on at least a surface of the porous metal body 1 facing the continuous pores, and the porous metal bodies forming gas channels 9a, 9b, and 9c that supply gases to the anode layer and the cathode layer.
    Type: Application
    Filed: May 15, 2015
    Publication date: March 16, 2017
    Inventors: Chihiro HIRAIWA, Masatoshi MAJIMA, Hiromasa TAWARAYAMA, Naho MIZUHARA, Takahiro HIGASHINO, Yohei NODA
  • Publication number: 20170025687
    Abstract: An inexpensive porous current collector having high durability is provided by forming a silver layer having high strength on a current collector formed from a nickel porous base material. Porous current collectors 8a and 9a are used in a fuel cell 101 including a solid electrolyte layer 2, a first electrode layer 3 on one side of the solid electrolyte layer, and a second electrode layer 4 on the other side. The porous current collectors each include: an alloy layer 60a, which is formed from a tin (Sn)-containing alloy, at least on the surfaces of continuous pores 52 of a nickel porous base material 60 having the continuous pores 52; and a silver layer 55 stacked on the alloy layer.
    Type: Application
    Filed: February 23, 2015
    Publication date: January 26, 2017
    Inventors: Yohei NODA, Masatoshi MAJIMA, Kazuki OKUNO, Naho MIZUHARA, Chihiro HIRAIWA, Takahiro HIGASHINO, Hiromasa TAWARAYAMA, Masahiro KATO
  • Patent number: 9126151
    Abstract: An object of the present invention is to provide a hydrogen separation material resistant to thermal shock, excellent in hydrogen separation characteristic and applicable to a hydrogen separation membrane, etc. and a manufacturing method thereof, as well as a hydrogen separation module and a hydrogen production apparatus comprising the same. In the hydrogen separation material, a silica glass membrane is formed on a porous support having a linear expansion coefficient of 2×10?6/K or less. The manufacturing method for the hydrogen separation material includes a porous support forming step of forming a porous support comprising porous silica glass and a silica glass membrane forming step of forming a silica glass membrane on the surface of the porous silica glass. The hydrogen separation module comprises the hydrogen separation material and a steam reforming catalyst. The hydrogen production apparatus comprises the hydrogen separation module.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: September 8, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hiromasa Tawarayama, Toru Adachi, Toshiaki Kakii
  • Publication number: 20130022509
    Abstract: An object of the present invention is to provide a hydrogen separation material resistant to thermal shock, excellent in hydrogen separation characteristic and applicable to a hydrogen separation membrane, etc. and a manufacturing method thereof, as well as a hydrogen separation module and a hydrogen production apparatus comprising the same. In the hydrogen separation material, a silica glass membrane is formed on a porous support having a linear expansion coefficient of 2×10?6/K or less. The manufacturing method for the hydrogen separation material includes a porous support forming step of forming a porous support comprising porous silica glass and a silica glass membrane forming step of forming a silica glass membrane on the surface of the porous silica glass. The hydrogen separation module comprises the hydrogen separation material and a steam reforming catalyst. The hydrogen production apparatus comprises the hydrogen separation module.
    Type: Application
    Filed: December 10, 2010
    Publication date: January 24, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hiromasa Tawarayama, Toru Adachi, Toshiaki Kakii
  • Patent number: 8336332
    Abstract: Provided are a process for the production of a precision press-molded article having a high transmittance a method of treating a glass to color or decolor the glass, the process comprising heat-treating a press-molded article containing at least one selected from WO3, Nb2O5 or TiO2 in an oxidizing atmosphere to produce a glass molded article, and the method comprising heat-treating a colored glass containing at least one oxide of WO3 and Nb2O5 in an oxidizing atmosphere to decolor the glass, or heat-treating a glass containing at least one oxide selected from WO3, Nb2O5 or TiO2 in a non-oxidizing atmosphere to color the glass.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: December 25, 2012
    Assignee: Hoya Corporation
    Inventors: Kazutaka Hayashi, Hiromasa Tawarayama, Xuelu Zou, Hiroshi Kawazoe
  • Publication number: 20120151964
    Abstract: Provided are a process for the production of a precision press-molded article having a high transmittance and a method of treating a glass to color or decolor the glass, the process comprising heat-treating a press-molded article containing at least one selected from WO3, Nb2O5 or TiO2 in an oxidizing atmosphere to produce a glass molded article, and the method comprising heat-treating a colored glass containing at least one oxide of WO3 and Nb2O5 in an oxidizing atmosphere to decolor the glass, or heat-treating a glass containing at least one oxide selected from WO3, Nb2O5 or TiO2 in a non-oxidizing atmosphere to color the glass.
    Type: Application
    Filed: March 1, 2012
    Publication date: June 21, 2012
    Applicant: HOYA CORPORATION
    Inventors: Kazutaka Hayashi, Hiromasa Tawarayama, Xuelu Zou, Hiroshi Kawazoe
  • Patent number: 7451620
    Abstract: An optical glass having a high refractive index and high dispersion characteristics that is suited to application to precision press molding to precisely mold the shape of final products for objectives not requiring grinding or polishing. An optical glass exhibiting a refractive index in the range of from 1.75 to 2.0, an Abbé number in the range of from 20 to 28.5. Optical parts comprised of this glass; press-molding materials comprised of this glass; methods of manufacturing the same; and methods of manufacturing molded glass products employing these materials.
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: November 18, 2008
    Assignee: Hoya Corporation
    Inventors: Xuelu Zou, Hiromasa Tawarayama, Kazutaka Hayashi, Hiroshi Kawazoe
  • Publication number: 20080216514
    Abstract: Provided are a process for the production of a precision press-molded article having a high transmittance and a method of treating a glass to color or decolor the glass, the process comprising heat-treating a press-molded article containing at least one selected from WO3, Nb2O5 or TiO2 in an oxidizing atmosphere to produce a glass molded article, and the method comprising heat-treating a colored glass containing at least one oxide of WO3 and Nb2O5 in an oxidizing atmosphere to decolor the glass, or heat-treating a glass containing at least one oxide selected from WO3, Nb2O5 or TiO2 in a non-oxidizing atmosphere to color the glass.
    Type: Application
    Filed: May 8, 2008
    Publication date: September 11, 2008
    Applicant: HOYA CORPORATION
    Inventors: Kazutaka Hayashi, Hiromasa Tawarayama, Xuelu Zou, Hiroshi Kawazoe
  • Publication number: 20060081010
    Abstract: An optical glass having a high refractive index and high dispersion characteristics that is suited to application to precision press molding to precisely mold the shape of final products for objectives not requiring grinding or polishing. An optical glass exhibiting a refractive index in the range of from 1.75 to 2.0, an Abbé number in the range of from 20 to 28.5. Optical parts comprised of this glass; press-molding materials comprised of this glass; methods of manufacturing the same; and methods of manufacturing molded glass products employing these materials.
    Type: Application
    Filed: October 17, 2005
    Publication date: April 20, 2006
    Applicant: HOYA CORPORATION
    Inventors: Xuelu Zou, Hiromasa Tawarayama, Kazutaka Hayashi, Hiroshi Kawazoe
  • Patent number: 6995101
    Abstract: An optical glass having a high refractive index and high dispersion characteristics suitable for application to precision press molding to precisely mold final products without requiring grinding or polishing. An optical glass can be prepared exhibiting a refractive index in the range of from 1.75 to 2.0, and an Abbé number in the range of from 20 to 28.5. Optical parts comprised of this glass; press-molding materials comprised of this glass; methods of manufacturing the same; and methods of manufacturing molded glass products employing these materials. A suitable optical glass is composed of the following in molar percent: 15–30% P2O5; 0.5–15% B2O3; 5–25% Nb2O5; 6–40% WO3; 4–45% of at least one of Li2O, Na2O or K2O; 1–5% K2O; 2–9% TiO2; and 0–30% (excluding 30%) of at least one RO selected from among BaO, ZnO, and SrO; with the total content of the above-stated components being equal to or more than 95 percent.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: February 7, 2006
    Assignee: Hoya Corporation
    Inventors: Xuelu Zou, Hiromasa Tawarayama, Kazutaka Hayashi, Hiroshi Kawazoe
  • Publication number: 20050011228
    Abstract: Provided are a process for the production of a precision press-molded article having a high transmittance and a method of treating a glass to color or decolor the glass, the process comprising heat-treating a press-molded article containing at least one selected from WO3, Nb2O5 or TiO2 in an oxidizing atmosphere to produce a glass molded article, and the method comprising heat-treating a colored glass containing at least one oxide of WO3 and Nb2O5 in an oxidizing atmosphere to decolor the glass, or heat-treating a glass containing at least one oxide selected from WO3, Nb2O5 or TiO2 in a non-oxidizing atmosphere to color the glass.
    Type: Application
    Filed: July 16, 2004
    Publication date: January 20, 2005
    Applicant: Hoya Corporation
    Inventors: Kazutaka Hayashi, Hiromasa Tawarayama, Xuelu Zou, Hiroshi Kawazoe