Patents by Inventor Hiromitsu Itabashi

Hiromitsu Itabashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9143041
    Abstract: A magnetic circuit for a non-contact charging apparatus comprising a coil, a coil yoke disposed on the rear surface side of the coil, and a magnetic attraction means disposed in a hole of the coil yoke with a magnetic gap in plane and/or thickness directions.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: September 22, 2015
    Assignee: HITACHI METALS, LTD.
    Inventors: Hiromitsu Itabashi, Yoshiyuki Moriyama
  • Patent number: 8937422
    Abstract: The magnetic iron core includes an amorphous foil strip wound to form the magnetic iron core. Preferably, the magnetic iron core is filled with resin, the resin being disposed by using a spacer between pluralities of windings of the amorphous foil strip. Preferably, the magnetic iron core is covered with resin integrated with and continuous to the resin disposed between pluralities of windings of the amorphous foil strip.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: January 20, 2015
    Assignees: Hitachi Industrial Equipment Systems Co., Ltd., Hitachi Appliances, Inc.
    Inventors: Yuji Enomoto, Zhuonan Wang, Ryoso Masaki, Hiromitsu Itabashi
  • Patent number: 8836192
    Abstract: In the axial gap rotating electrical machine, the rotor includes a rotor yoke that is formed by wrapping amorphous ribbon wound toroidal core, which is obtained by winding an amorphous magnetic metal ribbon into a toroidal core. Magnets having plural poles are circumferentially disposed on a stator-facing surface of the amorphous ribbon wound toroidal core.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: September 16, 2014
    Assignees: Hitachi Industrial Equipment Systems Co., Ltd., Hitachi Metals, Ltd., Hitachi Appliances, Inc.
    Inventors: Zhuonan Wang, Yuji Enomoto, Ryoso Masaki, Hiromitsu Itabashi, Tomio Yoshikawa
  • Patent number: 8786155
    Abstract: When an axial gap rotating electrical machine is assembled, stator cores are accurately positioned and a manufacturing process therefor is simplified. The axial gap rotating electrical machine comprises: a housing frame body having a first space in the cylindrical central part thereof and multiple second spaces located in the circumferential direction which have the same distances from the center; a shaft rotatably provided in the first space in the housing frame body; a core placed in each of the second spaces in the housing frame body and a coil arranged around the core; a rotor yoke fixed on the shaft, extended in the direction of the circumference thereof, and having multiple magnets arranged in circumferential positions confronting the cores; and a case having a hole for the shaft and housing the housing frame body and the rotor yoke.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: July 22, 2014
    Assignees: Hitachi Appliances, Inc., Hitachi Metals, Ltd., Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Zhuonan Wang, Yuji Enomoto, Motoya Ito, Ryoso Masaki, Hiromitsu Itabashi, Baiying Huang
  • Patent number: 8680736
    Abstract: An armature core includes a core portion formed of a lamination of plural non-crystalline metallic foil bands, wherein the armature core is provided with at least two cut surfaces with respect to the lamination layers. Amorphous metal is used as the iron base of the non-crystalline metallic foil bands. The cut surfaces are perpendicular to the lamination layers of the non-crystalline foil bands. Still further, the stator includes a stator core holding member in a disc form, the stator having a plurality of holes or recessions that are substantially in the same shape as a cross-sectional shape of the stator cores and wherein the stator cores are inserted in the holes or recessions of the stator core holding member and held by fixing in vicinities of respective central portions thereof, the central portions being with respect to the axial direction thereof.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: March 25, 2014
    Assignee: Hitachi Industrial Equipment Systems Co., Ltd.
    Inventors: Zhuonan Wang, Yuji Enomoto, Shigeki Morinaga, Ryoso Masaki, Shigeho Tanigawa, Hiromitsu Itabashi, Motoya Ito
  • Patent number: 8373326
    Abstract: An axial gap motor includes a stator having stator teeth, and also includes a rotor opposed to the stator with a gap in an axial direction of the stator. Each of the stator teeth includes a stator tooth body, a stator tooth end joined to at least one axial-direction end of the stator tooth body, and a stator coil disposed around the stator tooth body. The stator tooth body includes a wound core comprised of a multi-layered amorphous foil strip winding. The stator tooth end is formed by a compact including a powder magnetic core, and the stator tooth end includes a surface opposed to the rotor. A cross-sectional area of the stator tooth end perpendicular to an axis of the amorphous foil strip winding is larger than a cross-sectional area of the stator tooth body perpendicular to the axis of the amorphous foil strip winding.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: February 12, 2013
    Assignees: Hitachi Metals, Ltd., Hitachi Appliances, Inc.
    Inventors: Yuji Enomoto, Zhuonan Wang, Ryoso Masaki, Hiromitsu Itabashi, Kazumasa Ide
  • Publication number: 20120319647
    Abstract: A magnetic circuit for a non-contact charging apparatus comprising a coil, a coil yoke disposed on the rear surface side of the coil, and a magnetic attraction means disposed in a hole of the coil yoke with a magnetic gap in plane and/or thickness directions.
    Type: Application
    Filed: February 7, 2011
    Publication date: December 20, 2012
    Applicant: HITACHI METALS, LTD.
    Inventors: Hiromitsu Itabashi, Yoshiyuki Moriyama
  • Patent number: 8157929
    Abstract: Disclosed are: a magnetic shielding material having excellent magnetic shielding property at a low magnetic field; and a magnetic shielding component and a magnetic shielding room each using the magnetic shielding material. Specifically disclosed is a magnetic shielding material comprising the following components (by mass): Ni: 70.0-85.0%, Cu: 0.6% or less, Mo: 10.0% or less and Mn: 2.0% or less, with the remainder being substantially Fe. The magnetic shielding material has a relative magnetic permeability of 40,000 or more under a magnetic field of 0.05 A/m and a squareness ratio (Br/B0.8) of 0.85 or less, wherein the squareness ratio (Br/B0.8) is a ratio of a remanent magnetic flux density (Br) to a maximum magnetic flux density (B0.8) in a DC hysteresis curve produced under the maximum magnetic field of 0.8 A/m.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: April 17, 2012
    Assignee: Hitachi Metals, Ltd.
    Inventors: Shin-ichiro Yokoyama, Yasuyuki Ilda, Hakaru Sasaki, Yoji Ishikura, Hiromitsu Itabashi, Masahiro Mita, Yoshiyuki Fujihara
  • Publication number: 20120049685
    Abstract: When an axial gap rotating electrical machine is assembled, stator cores are accurately positioned and a manufacturing process therefor is simplified. The axial gap rotating electrical machine is comprised of: a housing frame body having a first space in the cylindrical central part thereof and multiple second spaces located in the circumferential direction which have the same distances from the center; a shaft rotatably provided in the first space in the housing frame body; a core placed in each of the second spaces in the housing frame body and a coil arranged outside of the core; a rotor yoke fixed on the shaft, extended in the direction of the circumference thereof, and having multiple magnets arranged in circumferential positions confront the cores; and a case having a hole for the shaft and housing the housing frame body and the rotor yoke.
    Type: Application
    Filed: August 16, 2011
    Publication date: March 1, 2012
    Inventors: Zhuonan WANG, Yuji Enomoto, Motoya Ito, Ryoso Masaki, Hiromitsu Itabashi, Baiying Huang
  • Publication number: 20110156519
    Abstract: In the axial gap rotating electrical machine, the rotor includes a rotor yoke that is formed by wrapping amorphous ribbon wound toroidal core, which is obtained by winding an amorphous magnetic metal ribbon into a toroidal core. Magnets having plural poles are circumferentially disposed on a stator-facing surface of the amorphous ribbon wound toroidal core.
    Type: Application
    Filed: December 28, 2010
    Publication date: June 30, 2011
    Inventors: Zhuonan WANG, Yuji Enomoto, Ryoso Masaki, Hiromitsu Itabashi, Tomio Yoshikawa
  • Publication number: 20110095642
    Abstract: The invention provides a high-quality magnetic iron core by concurrently satisfying requirements for enhancement in strength of a wound iron core, particularly, strength of a wound iron core made up of amorphous foil strips, reduction in manufacturing time, and manufacturing cost. The invention also provides an electromagnetic application product highly efficient and small in size as an application of the magnetic iron core. The magnetic iron core includes an amorphous foil strip being wound to form the magnetic iron core. The magnetic iron core is filled with resin, the resin being disposed in every plural turns of windings of the amorphous foil strip. Preferably, the magnetic iron core is filled with the resin, the resin being disposed by using a spacer in every plural turns of windings of the amorphous foil strip. Preferably, the magnetic iron core is covered with resin which is integrated with and continuous to the resin disposed in every plural turns of windings of the amorphous foil strip.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 28, 2011
    Inventors: Yuji ENOMOTO, Zhuonan Wang, Ryoso Masaki, Hiromitsu Itabashi
  • Publication number: 20110095628
    Abstract: The present invention provides a low-iron-loss (high-efficiency) and low-cost axial gap motor that includes a high-quality soft magnetic material placed at an appropriate position, reduces torque pulsation, keeps induced voltage in the shape of a sine wave, and increases the degree of freedom in design. The axial gap motor includes a stator having stator teeth; and a rotor being opposed to the stator with a gap in an axial direction of the stator. Each of the stator teeth includes a stator tooth body, a stator tooth end joined to at least one axial-direction end of the stator tooth body, and a stator coil disposed around the stator tooth body. The stator tooth body includes a wound core comprised of a multi-layered amorphous foil strip winding. The stator tooth end is formed by a compact made of a powder magnetic core, and includes an opposed surface to the rotor.
    Type: Application
    Filed: October 22, 2010
    Publication date: April 28, 2011
    Inventors: Yuji ENOMOTO, Zhuonan Wang, Ryoso Masaki, Hiromitsu Itabashi, Kazumasa Ide
  • Publication number: 20100148611
    Abstract: An armature core includes a core portion formed of a lamination of plural noncrystalline metallic foil bands and resin for bond-fixing the non-crystalline metallic foil bands, wherein the armature core is provided with at least two cut surfaces with respect to the lamination layers. Amorphous metal is used as the iron base of the non-crystalline metallic foil bands. The cut surfaces are perpendicular to the lamination-layers of the non-crystalline foil bands. For the amorphous core, a resin mold is formed. The contact portions between winding wires and amorphous are provided with edge roundness. Further, an axial gap motor using cut cores of amorphous lamination as stator cores is provided.
    Type: Application
    Filed: November 10, 2009
    Publication date: June 17, 2010
    Inventors: Zhuonan Wang, Yuji ENOMOTO, Shigeki MORINAGA, Ryoso MASAKI, Shigeho TANIGAWA, Hiromitsu ITABASHI, Motoya ITO
  • Publication number: 20100047111
    Abstract: Disclosed are: a magnetic shielding material having excellent magnetic shielding property at a low magnetic field; and a magnetic shielding component and a magnetic shielding room each using the magnetic shielding material. Specifically disclosed is a magnetic shielding material comprising the following components (by mass): Ni: 70.0-85.0%, Cu: 0.6% or less, Mo: 10.0% or less and Mn: 2.0% or less, with the remainder being substantially Fe. The magnetic shielding material has a relative magnetic permeability of 40,000 or more under a magnetic field of 0.05 A/m and a squareness ratio (Br/B0.8) of 0.85 or less, wherein the squareness ratio (Br/B0.8) is a ratio of a remanent magnetic flux density (Br) to a maximum magnetic flux density (B0.8) in a DC hysteresis curve produced under the maximum magnetic field of 0.8 A/m.
    Type: Application
    Filed: February 12, 2008
    Publication date: February 25, 2010
    Applicant: Hitachi Metals Ltd
    Inventors: Shin-ichiro Yokoyama, Yasuyuki Iida, Hakaru Sasaki, Yoji Ishikura, Hiromitsu Itabashi, Masahiro Mita, Yoshiyuki Fujihara
  • Patent number: 6692847
    Abstract: A magneto resistive sensor having a GMR magnetic laminated film is disclosed. The GMR magnetic laminated film comprises a plurality of magnetic thin layers having a NiCoFeB composition alternately laminated with a nonmagnetic thin layer, such as copper layer. Since the magnetic thin layer contains B in its composition, the GMR magnetic laminated film can stand in magneto resistance ratio (&Dgr;R/R %) under a high temperature of up to 250 degrees centigrade. By the reason, electric wiring can be connected by a lead-free solder to assemble a magnetic resistive sensor for a magnetic rotary encoder. The thermal resistance variation and the magneto resistance ratio are further improved when a NiFeCr underlayer is used under the GMR magnetic laminated film.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: February 17, 2004
    Assignee: Hitachi Metals, Ltd.
    Inventors: Fumio Shirasaki, Hiroyuki Mima, Hitoshi Harata, Hiromitsu Itabashi
  • Patent number: 6556007
    Abstract: To provide a bearing sensor having a thin plane coil for applying a biasing magnetic field and at least one magneto resistive element pair (a first magneto resistive thin plate and a second magneto resistive thin plate) crossing opposed conductor sides of the coil. The plane coil has at least one pair of opposed conductor sides (a first side and a second side). The first magneto resistive thin plate and the first side cross one another at an angle more than 30 degrees and less than 90 degrees. The second magneto resistive thin plate and the second side cross one another at an angle more than 30 degrees and less than 90 degrees. While biasing magnetic fields in opposite directions are applied to the magneto resistive thin plates, respectively, intermediate potentials of the magneto resistive element pair are measured to determine bearings based on the difference between the intermediate potentials.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: April 29, 2003
    Assignee: Hitachi Metals, Ltd.
    Inventors: Yasunori Abe, Osamu Shimoe, Yukimasa Shonowaki, Hiromitsu Itabashi, Hiroyuki Mima, Hitoshi Harata
  • Publication number: 20020090534
    Abstract: A magneto resistive sensor having a GMR magnetic laminated film is disclosed. The GMR magnetic laminated film comprises a plurality of magnetic thin layers having a NiCoFeB composition alternately laminated with a nonmagnetic thin layer, such as copper layer. Since the magnetic thin layer contains B in its composition, the GMR magnetic laminated film can stand in magneto resistance ratio (&Dgr;R/R %) under a high temperature of up to 250 degrees centigrade. By the reason, electric wiring can be connected by a lead-free solder to assemble a magnetic resistive sensor for a magnetic rotary encoder. The thermal resistance variation and the magneto resistance ratio are further improved when a NiFeCr underlayer is used under the GMR magnetic laminated film.
    Type: Application
    Filed: December 19, 2001
    Publication date: July 11, 2002
    Applicant: Hitachi Metals, Ltd.
    Inventors: Fumio Shirasaki, Hiroyuki Mima, Hitoshi Harata, Hiromitsu Itabashi