Patents by Inventor Hironori Koyano

Hironori Koyano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10033290
    Abstract: There is disclosed a power conversion apparatus 3 for converting polyphase ac power directly to ac power. A conversion circuit includes first switching devices 311, 313, 315 and second switching devices 312, 314, 316 connected, respectively, with the phases R, S, T of the polyphase ac power, and configured to enable electrical switching operation in both directions. There are provided input lines R, S, T connected with input terminals of the switching devices and output lines P, N connected with output terminals of the switching devices. The output terminals of the first switching devices and the output terminals of the second switching devices are, respectively, arranged in a row. The first switching devices and second switching devices are arranged side by side with respect to a direction of the rows. The output lines are disposed below the input lines in an up and down direction.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: July 24, 2018
    Assignees: NISSAN MOTOR CO., LTD., NAGAOKA UNIVERSITY OF TECHNOLOGY
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Patent number: 9755535
    Abstract: A power conversion apparatus is for converting polyphase ac power directly to ac power. A conversion circuit includes a plurality of first switching devices 311, 313, 315 and a plurality of second switching devices 312, 314, 316 connected, respectively, with the phases R, S, T of the polyphase ac power, and configured to enable electrical switching operation in both directions. There are provided a plurality of condensers 821˜826 connected with the conversion circuit. At least one of the condensers is provided, for each of the first switching devices and the second switching devices, between two of the phases of the polyphase ac power. It is possible to reduce a wiring distance between the condenser and the switching devices.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: September 5, 2017
    Assignees: NISSAN MOTOR CO., LTD., NAGAOKA UNIVERSITY OF TECHNOLOGY
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Patent number: 9641092
    Abstract: Provided is a power converter 3 that directly converts polyphase AC power to AC power. A converter circuit has a plurality of first switching elements 311, 313 and 315 that are connected to each phase R, S or T of the polyphase AC power to enable switching for turning on current-carrying bidirectionally, and a plurality of second switching elements 312, 314 and 316 that are connected to each phase to enable switching for turning on current-carrying bidirectionally. The converter circuit comprises input lines R, S and T connected to each input terminal, and output lines P and N connected to each output terminal. Parts of wiring 347 and 348 of protection circuits 32 are located between output lines P and N. The wiring distance between each protection circuit 32 and the corresponding switching element can be shortened.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: May 2, 2017
    Assignees: NISSAN MOTOR CO., LTD., NAGAOKA UNIVERSITY OF TECHNOLOGY
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Patent number: 9614454
    Abstract: Provided is a power converter 3 that directly converts polyphase AC power to AC power. A converter circuit has a plurality of switching elements 311, 313, 315, 312, 314 and 316 which are connected to each phase R, S or T of the polyphase AC power to enable switching for turning on current-carrying bidirectionally. At least three condensers 821 to 826 are provided between phases of the converter circuit. The three condensers are respectively placed at apexes of a triangle on a plane that is in parallel with a part-mounting surface on which the switching elements are actually mounted. The wiring distance between the condensers and the switching elements can be shortened.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: April 4, 2017
    Assignees: NISSAN MOTOR CO., LTD., NAGAOKA UNIVERSITY OF TECHNOLOGY
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Patent number: 9490721
    Abstract: Provided is a power converter 3 that directly converts polyphase AC power to AC power. A converter circuit has a plurality of first switching elements 311, 313 and 315 and a plurality of second switching elements 312, 314 and 316, both of which are connected to each phase R, S or T of the polyphase AC power to enable switching for turning on current-carrying bidirectionally. Condensers 821 to 826 are provided between phases. Input terminals of the first switching elements and those of the second switching elements are arranged to form respective lines. Some of the plurality of condensers 821 and 822 are arranged to be angled relative to the arrangement direction of the terminals. The wiring distance between the condensers and the switching elements can be shortened.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: November 8, 2016
    Assignees: NISSAN MOTOR CO., LTD., NAGAOKA UNIVERSITY OF TECHNOLOGY
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Patent number: 9425701
    Abstract: There is disclosed a power conversion apparatus 3 for converting polyphase ac power directly to ac power. A conversion circuit includes a plurality of first switching devices 311, 313, 315 and a plurality of second switching devices 312, 314, 316 connected, respectively, with the phases R, S, T of the polyphase ac power, and configured to enable electrical switching operation in both directions. Output lines 331, 332 formed by a pair of busbars are connected with the conversion circuit. The first switching devices and the second switching devices are so arranged that output terminals are arranged in a row. The output lines 331, 332 are connected with the output terminals and drawn out rectilinearly in one direction.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: August 23, 2016
    Assignees: NISSAN MOTOR CO., LTD., NAGAOKA UNIVERSITY OF TECHNOLOGY
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Patent number: 9369056
    Abstract: A power converter is provided for direct conversion of multi-phase AC power to AC power. The power converter includes a conversion circuit and a plurality of output lines. The conversion circuit has first and second switching elements that are configured to be connected to phases of the multi-phase AC power for bidirectional switching of energizing current. The output lines are connected to the conversion circuit. The first and second switching elements have output terminals. The output terminals of the first and second switching elements are arranged in first and second rows. The output terminals of the first and second switching elements face each other. The first output lines include two first output lines including first and second widely shaped bus bars connected to the output terminals of the first and second switching elements, respectively. The first output lines extending out in one direction, and line up in an upright direction.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: June 14, 2016
    Assignees: Nissan Motor Co., Ltd., NATIONAL UNIVERSITY CORPORATION NAGAOKA UNIVERSITY OF TECHNOLOGY
    Inventors: Hironori Koyano, Takamasa Nakamura, Kouji Yamamoto, Junichi Itoh, Yoshiya Ohnuma
  • Patent number: 9369055
    Abstract: A power converter is provided for direct conversion of multi-phase AC power to AC power. The power converter includes a conversion circuit, a plurality of input lines and a plurality of capacitors. The conversion circuit has first and second switching elements that are configured to be connected to the phases of the multi-phase AC power for bidirectional switching of energizing current. The input lines are connected to the conversion circuit. The capacitors are connected to the conversion circuit. The first and second switching elements are arranged such that paired input terminals line up in a row with the paired input terminals to an outside, and paired output terminals to an inside. The input lines extend in a direction in which the paired input terminals line up, and extend from one of the input terminals to another of the input terminals.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: June 14, 2016
    Assignees: Nissan Motor Co., Ltd., NATIONAL UNIVERSITY CORPORATION NAGAOKA UNIVERSITY OF TECHNOLOGY
    Inventors: Hironori Koyano, Takamasa Nakamura, Kouji Yamamoto, Junichi Itoh, Yoshiya Ohnuma
  • Publication number: 20140247636
    Abstract: A power converter is provided for direct conversion of multi-phase AC power to AC power. The power converter includes a conversion circuit and a plurality of output lines. The conversion circuit has first and second switching elements that are configured to be connected to phases of the multi-phase AC power for bidirectional switching of energizing current. The output lines are connected to the conversion circuit. The first and second switching elements have output terminals. The output terminals of the first and second switching elements are arranged in first and second rows. The output terminals of the first and second switching elements face each other. The first output lines include two first output lines including first and second widely shaped bus bars connected to the output terminals of the first and second switching elements, respectively. The first output lines extending out in one direction, and line up in an upright direction.
    Type: Application
    Filed: September 28, 2012
    Publication date: September 4, 2014
    Inventors: Hironori Koyano, Takamasa Nakamura, Kouji Yamamoto, Junichi Itoh, Yoshiya Ohnuma
  • Publication number: 20140247635
    Abstract: A power converter is provided for direct conversion of multi-phase AC power to AC power. The power converter includes a conversion circuit, a plurality of input lines and a plurality of capacitors. The conversion circuit has first and second switching elements that are configured to be connected to the phases of the multi-phase AC power for bidirectional switching of energizing current. The input lines are connected to the conversion circuit. The capacitors are connected to the conversion circuit. The first and second switching elements are arranged such that paired input terminals line up in a row with the paired input terminals to an outside, and paired output terminals to an inside. The input lines extend in a direction in which the paired input terminals line up, and extend from one of the input terminals to another of the input terminals.
    Type: Application
    Filed: September 28, 2012
    Publication date: September 4, 2014
    Applicant: National University Corporation Nagaoka University of Technology
    Inventors: Hironori Koyano, Takamasa Nakamura, Kouji Yamamoto, Junichi Itoh, Yoshiya Ohnuma
  • Publication number: 20140192578
    Abstract: Provided is a power converter 3 that directly converts polyphase AC power to AC power. A converter circuit has a plurality of first switching elements 311, 313 and 315 that are connected to each phase R, S or T of the polyphase AC power to enable switching for turning on current-carrying bidirectionally, and a plurality of second switching elements 312, 314 and 316 that are connected to each phase to enable switching for turning on current-carrying bidirectionally. The converter circuit comprises input lines R, S and T connected to each input terminal, and output lines P and N connected to each output terminal. Parts of wiring 347 and 348 of protection circuits 32 are located between output lines P and N. The wiring distance between each protection circuit 32 and the corresponding switching element can be shortened.
    Type: Application
    Filed: May 7, 2012
    Publication date: July 10, 2014
    Applicants: Nagaoka University of Technology, NISSAN MOTOR CO., LTD
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Publication number: 20140185326
    Abstract: There is disclosed a power conversion apparatus 3 for converting polyphase ac power directly to ac power. A conversion circuit includes a plurality of first switching devices 311, 313, 315 and a plurality of second switching devices 312, 314, 316 connected, respectively, with the phases R, S, T of the polyphase ac power, and configured to enable electrical switching operation in both directions. Output lines 331, 332 formed by a pair of busbars are connected with the conversion circuit. The first switching devices and the second switching devices are so arranged that output terminals are arranged in a row. The output lines 331, 332 are connected with the output terminals and drawn out rectilinearly in one direction.
    Type: Application
    Filed: May 7, 2012
    Publication date: July 3, 2014
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Publication number: 20140126263
    Abstract: There is disclosed a power conversion apparatus 3 for converting polyphase ac power directly to ac power. A conversion circuit includes first switching devices 311, 313, 315 and second switching devices 312, 314, 316 connected, respectively, with the phases R, S, T of the polyphase ac power, and configured to enable electrical switching operation in both directions. There are provided input lines R, S, T connected with input terminals of the switching devices and output lines P, N connected with output terminals of the switching devices. The output terminals of the first switching devices and the output terminals of the second switching devices are, respectively, arranged in a row. The first switching devices and second switching devices are arranged side by side with respect to a direction of the rows. The output lines are disposed below the input lines in an up and down direction.
    Type: Application
    Filed: May 7, 2012
    Publication date: May 8, 2014
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Publication number: 20140104913
    Abstract: Provided is a power converter 3 that directly converts polyphase AC power to AC power. A converter circuit has a plurality of switching elements 311, 313, 315, 312, 314 and 316 which are connected to each phase R, S or T of the polyphase AC power to enable switching for turning on current-carrying bidirectionally. At least three condensers 821 to 826 are provided between phases of the converter circuit. The three condensers are respectively placed at apexes of a triangle on a plane that is in parallel with a part-mounting surface on which the switching elements are actually mounted. The wiring distance between the condensers and the switching elements can be shortened.
    Type: Application
    Filed: May 7, 2012
    Publication date: April 17, 2014
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Publication number: 20140085950
    Abstract: Provided is a power converter 3 that directly converts polyphase AC power to AC power. A converter circuit has a plurality of first switching elements 311, 313 and 315 and a plurality of second switching elements 312, 314 and 316, both of which are connected to each phase R, S or T of the polyphase AC power to enable switching for turning on current-carrying bidirectionally. Condensers 821 to 826 are provided between phases. Input terminals of the first switching elements and those of the second switching elements are arranged to form respective lines. Some of the plurality of condensers 821 and 822 are arranged to be angled relative to the arrangement direction of the terminals. The wiring distance between the condensers and the switching elements can be shortened.
    Type: Application
    Filed: May 7, 2012
    Publication date: March 27, 2014
    Applicants: Nagaoka University of Technology, NISSAN MOTOR CO., LTD
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma
  • Publication number: 20140085956
    Abstract: A power conversion apparatus is for converting polyphase ac power directly to ac power. A conversion circuit includes a plurality of first switching devices 311, 313, 315 and a plurality of second switching devices 312, 314, 316 connected, respectively, with the phases R, S, T of the polyphase ac power, and configured to enable electrical switching operation in both directions. There are provided a plurality of condensers 821˜826 connected with the conversion circuit. At least one of the condensers is provided, for each of the first switching devices and the second switching devices, between two of the phases of the polyphase ac power. It is possible to reduce a wiring distance between the condenser and the switching devices.
    Type: Application
    Filed: May 7, 2012
    Publication date: March 27, 2014
    Inventors: Hironori Koyano, Takamasa Nakamura, Masao Saito, Kouji Yamamoto, Tsutomu Matsukawa, Manabu Koshijo, Junichi Itoh, Yoshiya Ohnuma