Patents by Inventor Hiroshi Matsuo

Hiroshi Matsuo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240127982
    Abstract: An information processing apparatus includes a converting portion having a plurality of electrical conductors to be arranged in mutual separation and a medium arranged so as to mutually connect the plurality of electrical conductors, wherein the converting portion is the information processing apparatus to convert an input signal to an output signal. The medium includes the electrolyte and is configured to be capable of controlling an electrical conductivity of an electrically conductive path mutually electrically connecting the plurality of electrical conductors, and the medium is selected such that the electrical conductivity of the electrically conductive path changes over time with the input signal not being present.
    Type: Application
    Filed: January 27, 2022
    Publication date: April 18, 2024
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, TOKYO UNIVERSITY OF SCIENCE FOUNDATION, TOYOTA PHYSICAL AND CHEMICAL RESEARCH INSTITUTE, NATIONAL UNIVERSITY CORPORATION TOTTORI UNIVERSITY, NAGASE & CO., LTD.
    Inventors: Hiroyuki AKINAGA, Hisashi SHIMA, Yasuhisa NAITOH, Hiroshi SATOU, Dan SATOU, Takuma MATSUO, Kentaro KINOSHITA, Toshiyuki ITOH, Toshiki NOKAMI, Masakazu KOBAYASHI
  • Patent number: 11931726
    Abstract: The invention provides a gold-supporting catalyst comprising gold nanoparticles and a carrier consisting of porous ceramic obtained by firing a mixture comprising an aluminum compound, a lime component, and a plastic clay containing 1% by mass or less of feldspars and quartz, wherein the gold nanoparticles are supported in an amount of 0.01 to 10 parts by mass on the carrier based on 100 parts by mass of the carrier.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: March 19, 2024
    Assignees: TOKYO METROPOLITAN UNIVERSITY, FUJI CHEMICAL INDUSTRIES, LTD.
    Inventors: Toru Murayama, Masatake Haruta, Takashi Takei, Qianqian Zhu, Yasunori Inoue, Fumio Uchida, Kenji Maeda, Hiroshi Matsuo, Yasuo Shibasaki
  • Patent number: 11767308
    Abstract: Provided is a method of stabilizing a perfluorodioxolane compound, which includes having a quinone compound present in a composition containing a perfluorodioxolane compound, wherein the perfluorodioxolane compound is one or more perfluorodioxolane compounds selected from the group consisting of a perfluorodioxolane compound denoted by general formula (1) and a perfluorodioxolane compound denoted by general formula (2).
    Type: Grant
    Filed: December 25, 2020
    Date of Patent: September 26, 2023
    Assignees: TOSOH CORPORATION, TOSOH FINECHEM CORPORATION
    Inventors: Daisuke Inoue, Yusuke Sesoko, Hiroshi Matsuo, Hiroki Takamiya, Hideyuki Mimura, Tomoya Shimono, Tomonari Nagai
  • Publication number: 20230068345
    Abstract: Provided is a method of stabilizing a perfluorodioxolane compound, which includes having a quinone compound present in a composition containing a perfluorodioxolane compound, wherein the perfluorodioxolane compound is one or more perfluorodioxolane compounds selected from the group consisting of a perfluorodioxolane compound denoted by general formula (1) and a perfluorodioxolane compound denoted by general formula (2).
    Type: Application
    Filed: December 25, 2020
    Publication date: March 2, 2023
    Applicants: TOSOH CORPORATION, TOSOH FINECHEM CORPORATION
    Inventors: Daisuke INOUE, Yusuke SESOKO, Hiroshi MATSUO, Hiroki TAKAMIYA, Hideyuki MIMURA, Tomoya SHIMONO, Tomonari NAGAI
  • Patent number: 11591349
    Abstract: A method for producing a particulate aluminum alloy involves pulverizing an aluminum alloy in a hydrocarbon solvent in the presence of an organic aluminum compound. Methods for producing trialkylaluminum involve reacting an aluminum-magnesium alloy with an alkyl halide in the presence of a nitrogen-containing organic compound to obtain a trialkylaluminum-containing reaction product, and reacting an aluminum-magnesium alloy and an alkyl halide. A highly active, low viscosity composition containing the particulate aluminum alloy and a method for producing the particulate aluminum alloy-containing composition are also described.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: February 28, 2023
    Assignee: TOSOH FINECHEM CORPORATION
    Inventors: Hiroshi Matsuo, Yujin Takemoto, Kotaro Sakoda, Toshio Naka
  • Patent number: 11555024
    Abstract: Provided is a method of manufacturing a trifluoropyruvyl fluoride dimer, including a reaction step of reacting hexafluoropropylene oxide and aldehyde.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: January 17, 2023
    Assignees: TOSOH CORPORATION, TOSOH FINECHEM CORPORATION
    Inventors: Hideki Miyauchi, Hiroshi Matsuo, Takumi Kagawa, Norihisa Kondo, Hideyuki Mimura
  • Publication number: 20230002342
    Abstract: Provided is a method of producing perfluoro(2,4-dimethyl-2-fluoroformyl-1,3-dioxolane, the method having a dimer reaction step of reacting a trifluoropyruvic acid fluoride dimer with hexafluoropropylene oxide in an organic solvent in the presence of one or more fluorides selected from the group consisting of potassium fluoride and sodium fluoride to obtain perfluoro(dimethyl-2-oxo-1,4-dioxane).
    Type: Application
    Filed: October 2, 2020
    Publication date: January 5, 2023
    Applicants: SAGAMI CHEMICAL RESEARCH INSTITUTE, TOSOH CORPORATION, TOSOH FINECHEM CORPORATION
    Inventors: Munenori INOUE, Tatsuya UEJI, Hiroshi MATSUO
  • Publication number: 20220227555
    Abstract: Provided is a packaging film including: a substrate layer that includes polyethylene; and a coating layer that includes a resin and is provided in contact with one surface of the substrate layer or is provided over one surface of the substrate layer through an anchor coat layer. In one preferable aspect of the packaging film, when a glass transition temperature of the coating layer is represented by Tgc and a glass transition temperature of the substrate layer is represented by Tgs, a value of Tgc is ?25° C. to 120° C. and a value of Tgc-Tgs is 90° C. to 245° C.
    Type: Application
    Filed: May 28, 2020
    Publication date: July 21, 2022
    Applicant: MITSUI CHEMICALS TOHCELLO, INC.
    Inventors: Keiichi YAMAMOTO, Masayuki SAKURAI, Izumi HARANO, Tsutomu HARA, Ryousuke MORITA, Hiroyuki WAKAKI, Tomoyoshi HAKAMATA, Hiroshi MATSUO, Ichiro TAKEISHI
  • Patent number: 11329405
    Abstract: Provided is a tape-shaped contact member including a tape-shaped contact material. At least one wire-shaped brazing material is bonded to the tape-shaped contact material, at least one projection including the brazing material and protruding from a surface of the contact material is formed in a cross-sectional shape, a diffusion region containing a metal component forming the brazing material is formed along an interface with the brazing material inside the contact material, and the diffusion region has a thickness of 2 ?m or more and 10 ?m or less. A chip-shaped contact component can be obtained by cutting the tape-shaped contact member to an arbitrary length. The present contact component is useful as a constituent member for a switching electrical contact, and capable of adapting to height reduction of the electrical contact. The present invention can also contribute to reduction of occurrence of poor bonding.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: May 10, 2022
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Hiroshi Matsuo, Ryoe Wada
  • Publication number: 20220002262
    Abstract: Provided is a method of producing perfluoro(2-methylene-4-methyl-1,3-dioxolane), the method including at least following processes (1) to (3): (1) reacting at least one of perfluoro(2,4-dimethyl-2-fluoroformyl-1,3-dioxolane) and a hydrolysis product thereof with a basic aqueous solution containing one or more cations selected from the group consisting of alkali metal ions and alkaline earth metal ions and then separating a liquid containing produced perfluoro(2,4-dimethyl-1,3-dioxolane-2-yl)carboxylic acid alkali metal salts or perfluoro(2,4-dimethyl-1,3-dioxolane-2-yl)carboxylic acid alkaline earth metal salts by a liquid separation operation; (2) performing one or more water content reduction treatments selected from the group consisting of water evaporation and water adsorption on the liquid containing the obtained perfluoro(2,4-dimethyl-1,3-dioxolane-2-yl)carboxylic acid alkali metal salts or perfluoro(2,4-dimethyl-1,3-dioxolane-2-yl)carboxylic acid alkaline earth metal salts to obtain perfluoro(2,4-di
    Type: Application
    Filed: November 6, 2019
    Publication date: January 6, 2022
    Applicants: TOSOH CORPORATION, TOSOH FINECHEM CORPORATION
    Inventors: Hideki MIYAUCHI, Hiroshi MATSUO, Yuichi MIYASHITA, Akihiro FUJI, Yusuke SHIGETA, Shota NISHIDA, Norihisa KONDO, Makoto WATANABE
  • Publication number: 20210252485
    Abstract: The invention provides a gold-supporting catalyst comprising gold nanoparticles and a carrier consisting of porous ceramic obtained by firing a mixture comprising an aluminum compound, a lime component, and a plastic clay containing 1% by mass or less of feldspars and quartz, wherein the gold nanoparticles are supported in an amount of 0.01 to 10 parts by mass on the carrier based on 100 parts by mass of the carrier.
    Type: Application
    Filed: September 6, 2019
    Publication date: August 19, 2021
    Applicants: TOKYO METROPOLITAN UNIVERSITY, FUJI CHEMICAL CO., LTD.
    Inventors: Toru Murayama, Masatake Haruta, Takashi Takei, Qianqian Zhu, Yasunori Inoue, Fumio Uchida, Kenji Maeda, Hiroshi Matsuo, Yasuo Shibasaki
  • Publication number: 20210214332
    Abstract: Provided is a method of manufacturing a trifluoropyruvyl fluoride dimer, including a reaction step of reacting hexafluoropropylene oxide and aldehyde.
    Type: Application
    Filed: September 3, 2019
    Publication date: July 15, 2021
    Applicants: TOSOH CORPORATION, TOSOH FINECHEM CORPORATION
    Inventors: Hideki MIYAUCHI, Hiroshi MATSUO, Takumi KAGAWA, Norihisa KONDO, Hideyuki MIMURA
  • Publication number: 20210047346
    Abstract: A method for producing a particulate aluminum alloy involves pulverizing an aluminum alloy in a hydrocarbon solvent in the presence of an organic aluminum compound. Methods for producing trialkylaluminum involve reacting an aluminum-magnesium alloy with an alkyl halide in the presence of a nitrogen-containing organic compound to obtain a trialkylaluminum-containing reaction product, and reacting an aluminum-magnesium alloy and an alkyl halide. A highly active, low viscosity composition containing the particulate aluminum alloy and a method for producing the particulate aluminum alloy-containing composition are also described.
    Type: Application
    Filed: September 1, 2020
    Publication date: February 18, 2021
    Inventors: Hiroshi MATSUO, Yujin TAKEMOTO, Kotaro SAKODA, Toshio NAKA
  • Patent number: 10870666
    Abstract: A method for producing a particulate aluminum alloy involves pulverizing an aluminum alloy in a hydrocarbon solvent in the presence of an organic aluminum compound. Methods for producing trialkylaluminum involve reacting an aluminum-magnesium alloy with an alkyl halide in the presence of a nitrogen-containing organic compound to obtain a trialkylaluminum-containing reaction product, and reacting an aluminum-magnesium alloy and an alkyl halide. A highly active, low viscosity composition containing the particulate aluminum alloy and a method for producing the particulate aluminum alloy-containing composition are also described.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: December 22, 2020
    Assignee: TOSOH FINECHEM CORPORATION
    Inventors: Hiroshi Matsuo, Yujin Takemoto, Kotaro Sakoda, Toshio Naka
  • Patent number: 10867729
    Abstract: Provided is a method for producing a sintered body that forms a rare-earth permanent magnet, has a single sintered structure and an arbitrary shape, and has easy magnetization axis orientations of different directions applied to the magnet material particles in a plurality of arbitrary regions. This method forms a three-dimensional first molded article from a composite material formed by mixing a resin material and magnet material particles containing a rare-earth substance. The first molded article is then subjected to a deforming force and a second molded article is formed in which the orientation direction of the easy magnetization axis of the magnet material particles in at least the one section of the horizontal cross-section is changed to a direction which differs from the orientation direction of the first molded article. The second molded article is heated to a sintering temperature and kept at the temperature for a period of time.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: December 15, 2020
    Assignee: NITTO DENKO CORPORATION
    Inventors: Kenichi Fujikawa, Katsuya Kume, Kazuo Ouchi, Toshinobu Hoshino, Masakazu Morimoto, Hirofumi Ono, Katsuyuki Nakabayashi, Miho Yamaguchi, Hiroshi Matsuo, Toshiaki Okuno, Makoto Fujihara, Eiichi Imoto, Hirofumi Ebe, Tomohiro Omure, Izumi Ozeki, Takashi Yamamoto, Yuki Kato, Tomoya Matsuda, Shoichiro Saito
  • Publication number: 20200048282
    Abstract: A method for producing a particulate aluminum alloy involves pulverizing an aluminum alloy in a hydrocarbon solvent in the presence of an organic aluminum compound. Methods for producing trialkylaluminum involve reacting an aluminum-magnesium alloy with an alkyl halide in the presence of a nitrogen-containing organic compound to obtain a trialkylaluminum-containing reaction product, and reacting an aluminum-magnesium alloy and an alkyl halide. A highly active, low viscosity composition containing the particulate aluminum alloy and a method for producing the particulate aluminum alloy-containing composition are also described.
    Type: Application
    Filed: October 4, 2017
    Publication date: February 13, 2020
    Applicants: Tosoh Finechem Corporation, Tosoh Finechem Corporation
    Inventors: Hiroshi MATSUO, Yujin TAKEMOTO, Kotaro SAKODA, Toshio NAKA
  • Publication number: 20190280402
    Abstract: Provided is a tape-shaped contact member including a tape-shaped contact material. At least one wire-shaped brazing material is bonded to the tape-shaped contact material, at least one projection including the brazing material and protruding from a surface of the contact material is formed in a cross-sectional shape, a diffusion region containing a metal component forming the brazing material is formed along an interface with the brazing material inside the contact material, and the diffusion region has a thickness of 2 ?m or more and 10 ?m or less. A chip-shaped contact component can be obtained by cutting the tape-shaped contact member to an arbitrary length. The present contact component is useful as a constituent member for a switching electrical contact, and capable of adapting to height reduction of the electrical contact. The present invention can also contribute to reduction of occurrence of poor bonding.
    Type: Application
    Filed: December 18, 2018
    Publication date: September 12, 2019
    Applicant: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Hiroshi MATSUO, Ryoe WADA
  • Publication number: 20180221951
    Abstract: Provided is a heretofore non-existing, novel rare-earth sintered magnet having both of an extremely low carbon content and an extremely small average particle size of magnet material particles. The sintered body for forming a rare-earth magnet comprises a large number of magnet material particles sintered together, wherein each of the magnet material particles contains a rare-earth substance and has an easy magnetization axis. This sintered body for forming a rare-earth magnet has a carbon content of 500 ppm or less, and the magnet material particles have an average particle size of 2 ?m or less.
    Type: Application
    Filed: July 29, 2016
    Publication date: August 9, 2018
    Applicant: NITTO DENKO CORPORATION
    Inventors: Kenichi FUJIKAWA, Izumi OZEKI, Tomohiro OMURE, Miho YAMAGUCHI, Toshiaki OKUNO, Hiroshi MATSUO
  • Publication number: 20180130581
    Abstract: Provided is a method for producing a sintered body that forms a rare-earth permanent magnet, has a single sintered structure and an arbitrary shape, and has easy magnetization axis orientations of different directions applied to the magnet material particles in a plurality of arbitrary regions. This method forms a three-dimensional first molded article from a composite material formed by mixing a resin material and magnet material particles containing a rare-earth substance. The first molded article is then subjected to a deforming force and a second molded article is formed in which the orientation direction of the easy magnetization axis of the magnet material particles in at least the one section of the horizontal cross-section is changed to a direction which differs from the orientation direction of the first molded article. The second molded article is heated to a sintering temperature and kept at the temperature for a period of time.
    Type: Application
    Filed: March 24, 2016
    Publication date: May 10, 2018
    Inventors: Kenichi FUJIKAWA, Katsuya KUME, Kazuo OUCHI, Toshinobu HOSHINO, Masakazu MORIMOTO, Hirofumi ONO, Katsuyuki NAKABAYASHI, Miho YAMAGUCHI, Hiroshi MATSUO, Toshiaki OKUNO, Makoto FUJIHARA, Eiichi IMOTO, Hirofumi EBE, Tomohiro OMURE, Izumi OZEKI, Takashi YAMAMOTO, Yuki KATO, Tomoya MATSUDA, Shoichiro SAITO
  • Patent number: 9878292
    Abstract: Provided is a method for manufacturing a sheet-shaped separation membrane that allows a sheet-shaped separation membrane having uniform separating ability to be manufactured at a high speed, the method comprising manufacturing a sheet-shaped separation membrane by forming a microporous layer on a porous substrate, wherein the method is characterized in having: a membrane-forming solution application step of coating a porous substrate with a membrane-forming solution in which a polymer is dissolved in a solvent, a congealing liquid application step of applying a congealing liquid by a liquid membrane drop method to the porous substrate coated with the membrane-forming solution, and a solvent removal step of removing the solvent from the congealed microporous layer.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: January 30, 2018
    Assignee: NITTO DENKO CORPORATION
    Inventors: Yoshihiro Kitamura, Ikuya Kuzuhara, Hiroshi Matsuo, Hirotoshi Ishizuka, Ken Nishiura, Yuu Takashima, Atsuhito Koumoto