Patents by Inventor Hiroshi Senda

Hiroshi Senda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11985489
    Abstract: In a sound processing method of operating audio equipment to perform sound processing relating to audio content in accordance with one embodiment, a distributor terminal communicates with the audio equipment and at least one listener terminal, the distributor terminal distributes the audio content from the distributor terminal to the at least one listener terminal, the distributor terminal specifies an operation listener terminal, from among the at least one listener terminal, that is permitted to change a sound processing parameter of the audio equipment, the operation listener terminal accepts the sound processing parameter changed by the operation listener terminal, the operation listener terminal transmits the sound processing parameter changed by the operation listener terminal to the distributor terminal, and the audio equipment performs the sound processing based on the changed sound processing parameter changed by the operation listener terminal.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: May 14, 2024
    Assignee: YAMAHA CORPORATION
    Inventors: Hiroshi Kotaki, Mitsutaka Goto, Mizuyuki Shirai, Akihiro Sonogi, Takahiro Senda, Hitomi Shimizu
  • Publication number: 20240135894
    Abstract: A panel drive circuit having an input interface to which an image signal is input, a gamma correction circuit that corrects an image processing signal generated by an image processing circuit performing image processing on the image signal input to the input interface, such that a gamma correction signal thus generated has predetermined gamma characteristics, an unevenness correction circuit that corrects the gamma correction signal generated through the correction by the gamma correction circuit, based on correction data for reducing unevenness of a display panel, and an D/A convertor that has a variable output voltage range, and performs D/A conversion on an unevenness correction signal generated through the correction by the unevenness correction circuit and outputs the signal thus generated to the display panel, and the unevenness correction circuit changes the correction method according to the output voltage range of the D/A convertor.
    Type: Application
    Filed: March 10, 2021
    Publication date: April 25, 2024
    Applicant: IIX INC.
    Inventors: Makoto HATAKENAKA, Takashi SAKAMOTO, Mitsuo HAGIWARA, Norimasa SENDA, Yoshihide MINEGISHI, Hiroshi MURASE
  • Publication number: 20230347448
    Abstract: Provided is a surface treatment method of a metallic material having a protective layer formed thereon. A surface of the protective layer is scanned while irradiating the surface and the surface is scanned while moving an irradiation spot along the surface, in a state in which a side layer of the protective layer along the metallic material remains covering the metallic material, and a side layer of the protective layer opposite to the metallic material side is removed by irradiation with the laser beam.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 2, 2023
    Inventors: Yoichi HONMO, Yasunori KATO, Tsuyoshi SAITO, Masafumi HOSOKAWA, Kenjiro MOMI, Manabu HARAGUCHI, Yuji FURUMAKI, Hiroshi SENDA
  • Patent number: 5854427
    Abstract: The present invention is related to an angular velocity sensor, and intends to improve the detection characteristic through a precise measuring of an angular velocity signal. For this objective, the invented angular velocity sensor comprises U-shape first and second piezoelectric elements(4),(5) bonded together sandwiching a detection electrode(6), wherein in at least one of the tuning fork arms(4a),(5a) the first and second piezoelectric elements(4),(5) are polarized in a direction of thickness along which the piezoelectric elements are bonded together. Driving electrodes(7),(12) and (8),(11) provided in diagonal arrangement on the tuning fork arm are supplied with driving signals inverse-phased to each other. In such a structure, the driving signals cancel to each other at the vicinity of detection electrode; as a result, the driving signals never mix with a detection signal to be detected by the detection electrode(6). Thus, the capability of detecting an angular velocity signal is improved.
    Type: Grant
    Filed: May 7, 1997
    Date of Patent: December 29, 1998
    Assignee: Matsushita Electric Industrical Co., Ltd.
    Inventors: Jiro Terada, Hiroshi Senda, Masami Tamura, Masaharu Ushihara, Masakazu Hatanaka
  • Patent number: 5526294
    Abstract: A key input device includes first and second key input electrodes being close to each other and being accessible by a finger of an operator. First and second signal input electrodes oppose the first and second key input electrodes respectively. A first signal is applied to the first signal input electrode. A second signal is applied to the second signal input electrode. The first signal and the second signal have different phases.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: June 11, 1996
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroaki Ono, Yoshiki Taketa, Mikio Nozu, Hiroshi Senda
  • Patent number: 5239868
    Abstract: An angular rate sensor detects an angular rate which is produced when a mobile body such as a motor vehicle moves. The angular rate detecting device comprises at least two angular rate sensors housed in a case perpendicularly to each other. The angular rate sensor comprising a pair of vibratory units which are interconnected by a connector in a tuning-fork configuration. The vibratory units of the angular rate sensors are vibrated at different frequencies. The angular rate sensors may be accommodated in a damper block, which may be housed in the case. Since the angular rate sensors are housed in the single case, the angular rate detecting device is compact in structure and small in size. With the angular rate sensors accommodated in the damper block, they are protected from resonance, crosstalk interferences, and noise, and hence can produce reliable detected output signals.
    Type: Grant
    Filed: August 24, 1992
    Date of Patent: August 31, 1993
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroshi Takenaka, Mikio Nozu, Hiroshi Senda, Toshihiko Ichinose, Jiro Terada, Kazumitsu Ueda, Yasuhito Osada, Takahiro Manabe
  • Patent number: 5038613
    Abstract: An angular rate sensor detects an angular rate which is produced when a mobile body such as a motor vehicle moves. The angular rate detecting device comprises at least two angular rate sensors housed in a case perpendicularly to each other. Each angular rate sensor comprises a pair of vibratory units which are interconnected by a connector in a tuning-fork configuration. The vibratory units of different angular rate sensors are vibrated at different frequencies. The angular rate sensors may be accommodated in a damper block, which may be housed in the case. Since the angular rate sensors are housed in the single case, the angular rate detecting device is compact in structure and small in size. With the angular rate sensors accommodated in the damper block, they are protected from resonance, crosstalk interferences, and noise, and hence can produce reliable detected output signals.
    Type: Grant
    Filed: May 21, 1990
    Date of Patent: August 13, 1991
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroshi Takenaka, Mikio Nozu, Hiroshi Senda, Toshihiko Ichinose, Jiro Terada, Kazumitsu Ueda, Yasuhito Osada, Takahiro Manabe
  • Patent number: 5014554
    Abstract: An angular rate sensor has a tuning fork structure composed of vibratory components. The vibratory components include piezoelectric drive and detection elements which are joined together into a tuning fork configuration, the drive and detection elements lying in respective orthogonal planes. Leads are electrically connected to the drive and detection elements, and lead terminals are electrically connected to the leads, respectively. The vibratory components are covered with a coating which is of a material having a lower elasticity than the elasticities of the vibratory components. The coating on the vibratory components effectively reduces the propagation of unwanted vibrations, thereby reducing output signal drifts.
    Type: Grant
    Filed: April 13, 1990
    Date of Patent: May 14, 1991
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Jiro Terada, Kazumitsu Ueda, Hiroshi Takenaka, Mikio Nozu, Hiroshi Senda, Yasuhito Osada, Toshihiko Ichinose, Takahiro Manabe