Patents by Inventor Hirotatsu Ishii

Hirotatsu Ishii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240106189
    Abstract: A chip on submount includes: a submount including a first surface directed in a first direction; a covering layer mounted on the first surface, extending to intersect the first direction, and including a second surface directed in the first direction; a laser element mounted on the second surface and including: a third surface directed in the first direction; and a light emission unit positioned at an intermediate portion of the laser element along a second direction intersecting the first direction, extending in a third direction intersecting the first direction and second direction, and configured to output laser light in the third direction; and a bonding wire attached onto the third surface and configured to exert a pressing force on the laser element, the pressing force including a component force directed in a direction opposite to the first direction.
    Type: Application
    Filed: December 11, 2023
    Publication date: March 28, 2024
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yasumasa KAWAKITA, Masakazu MIURA, Hirotatsu ISHII, Tetsuya TAKEUCHI
  • Publication number: 20220003950
    Abstract: An optical processing structure of an optical fiber, includes: an optical fiber that includes a core, a cladding, and a coating, the coating being partially removed; and a thermally conductive protective material made of a silicone-based thermally conductive compound and provided around the cladding in a coating removed region of the optical fiber. Further, the thermally conductive protective material contains a filler having a refractive index higher than a refractive index of the cladding, and the filler is present in a region where evanescent light seeping out of the cladding is present when cladding mode light propagating in the cladding is totally reflected.
    Type: Application
    Filed: September 20, 2021
    Publication date: January 6, 2022
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Takahiro TOMIYASU, Hirotatsu ISHII, Yoshihiro EMORI, Kenichi SUYAMA, Kouji MOCHIDUKI
  • Patent number: 10033154
    Abstract: A semiconductor optical element includes a semiconductor layer portion that includes an optical waveguide layer. The semiconductor layer portion contains a first impurity having a function of suppressing atomic vacancy diffusion and a second impurity having a function of promoting atomic vacancy diffusion, between a topmost surface of the semiconductor layer portion and the optical waveguide layer. The semiconductor layer portion includes two or more regions that extend in a deposition direction. At least one of the two or more regions contains both the first impurity and the second impurity. The two or more regions have different degrees of disordering in the optical waveguide layer achieved through atomic vacancy diffusion and different band gap energies of the optical waveguide layer.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: July 24, 2018
    Assignee: Furukawa Electronic Co., Ltd.
    Inventors: Kouhei Kinugawa, Hidehiro Taniguchi, Masafumi Tajima, Hirotatsu Ishii, Takeshi Namegaya
  • Patent number: 9960572
    Abstract: A semiconductor device includes a semiconductor layer formed of a III-V group semiconductor crystal containing As as a primary component of a V group. A V group element other than As has been introduced at a concentration of 0.02 to 5% into a V group site of the III-V group semiconductor crystal in the semiconductor layer.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: May 1, 2018
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Masayuki Iwami, Hirotatsu Ishii, Norihiro Iwai, Takeyoshi Matsuda, Akihiko Kasukawa, Takuya Ishikawa, Yasumasa Kawakita, Eisaku Kaji
  • Patent number: 9911842
    Abstract: A nitride semiconductor device includes; a semiconductor stack configured with a plurality of semiconductor layers made of nitride semiconductors provided on a base having a conductive portion; a first electrode provided on a portion of a semiconductor layer of the semiconductor layers configuring the semiconductor stack; a second electrode provided on a portion of a semiconductor layer of the semiconductor layers configuring the semiconductor stack separately from the first electrode; a first wiring provided at an upper layer of the first electrode; and a second wiring provided at an upper layer of the second electrode. A low permittivity area being a portion of which permittivity is lower than permittivities of the nitride semiconductors configuring the semiconductor stack at a lower layer of a portion of at least one of the first electrode and the second electrode other than a portion being junctioned with the semiconductor stack electrically.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: March 6, 2018
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kazuyuki Umeno, Shinya Otomo, Keishi Takaki, Jiang Li, Takuya Kokawa, Ryosuke Tamura, Masayuki Iwami, Shusuke Kaya, Hirotatsu Ishii
  • Publication number: 20160352075
    Abstract: A semiconductor laser device includes an active layer including a well layer and a barrier layer formed of a III-V group semiconductor crystal containing As as a primary component of a V group. A V group element other than As has been introduced at a concentration of 0.02 to 5% into a V group site of the III-V group semiconductor crystal in at least one of the well layer and the barrier layer, and a III group site of the III-V group semiconductor crystal in at least one of the well layer and the barrier layer contains Al.
    Type: Application
    Filed: August 12, 2016
    Publication date: December 1, 2016
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Masayuki IWAMI, Hirotatsu ISHII, Norihiro IWAI, Takeyoshi MATSUDA, Akihiko KASUKAWA, Takuya ISHIKAWA, Yasumasa KAWAKITA, Eisaku KAJI
  • Publication number: 20160351392
    Abstract: A semiconductor device includes a semiconductor layer formed of a III-V group semiconductor crystal containing As as a primary component of a V group. A V group element other than As has been introduced at a concentration of 0.02 to 5% into a V group site of the III-V group semiconductor crystal in the semiconductor layer.
    Type: Application
    Filed: August 12, 2016
    Publication date: December 1, 2016
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Masayuki IWAMI, Hirotatsu ISHII, Norihiro IWAI, Takeyoshi MATSUDA, Akihiko KASUKAWA, Takuya ISHIKAWA, Yasumasa KAWAKITA, Eisaku KAJI
  • Patent number: 9478944
    Abstract: A semiconductor laser element includes: a window region including a disordered portion formed by diffusion of a group-III vacancy, the diffusion promoted by providing on the window region a promoting film that absorbs a predetermined atom; a non-window region including an active layer of a quantum well structure; and a difference equal to or larger than 50 meV between an energy band gap in the window region and an energy band gap in the non-window region.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: October 25, 2016
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hidehiro Taniguchi, Hirotatsu Ishii, Takeshi Namegaya
  • Publication number: 20160276804
    Abstract: A semiconductor laser element includes: a window region including a disordered portion formed by diffusion of a group-III vacancy, the diffusion promoted by providing on the window region a promoting film that absorbs a predetermined atom; a non-window region including an active layer of a quantum well structure; and a difference equal to or larger than 50 meV between an energy band gap in the window region and an energy band gap in the non-window region.
    Type: Application
    Filed: August 14, 2014
    Publication date: September 22, 2016
    Applicant: Furukawa Electric Co., Ltd.
    Inventors: Hidehiro TANIGUCHI, Hirotatsu Ishii, Takeshi Namegaya
  • Publication number: 20160225889
    Abstract: A nitride semiconductor device includes; a semiconductor stack configured with a plurality of semiconductor layers made of nitride semiconductors provided on a base having a conductive portion; a first electrode provided on a portion of a semiconductor layer of the semiconductor layers configuring the semiconductor stack; a second electrode provided on a portion of a semiconductor layer of the semiconductor layers configuring the semiconductor stack separately from the first electrode; a first wiring provided at an upper layer of the first electrode; and a second wiring provided at an upper layer of the second electrode. A low permittivity area being a portion of which permittivity is lower than permittivities of the nitride semiconductors configuring the semiconductor stack at a lower layer of a portion of at least one of the first electrode and the second electrode other than a portion being junctioned with the semiconductor stack electrically.
    Type: Application
    Filed: April 13, 2016
    Publication date: August 4, 2016
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kazuyuki UMENO, Shinya Otomo, Keishi Takaki, Jiang Li, Takuya Kokawa, Ryosuke Tamura, Masayuki Iwami, Shusuke Kaya, Hirotatsu Ishii
  • Publication number: 20150180203
    Abstract: A semiconductor optical element includes a semiconductor layer portion that includes an optical waveguide layer. The semiconductor layer portion contains a first impurity having a function of suppressing atomic vacancy diffusion and a second impurity having a function of promoting atomic vacancy diffusion, between a topmost surface of the semiconductor layer portion and the optical waveguide layer. The semiconductor layer portion includes two or more regions that extend in a deposition direction. At least one of the two or more regions contains both the first impurity and the second impurity. The two or more regions have different degrees of disordering in the optical waveguide layer achieved through atomic vacancy diffusion and different band gap energies of the optical waveguide layer.
    Type: Application
    Filed: February 13, 2015
    Publication date: June 25, 2015
    Applicant: Furukawa Electric Co., Ltd.
    Inventors: Kouhei KINUGAWA, Hidehiro Taniguchi, Masafumi Tajima, Hirotatsu Ishii, Takeshi Namegaya
  • Patent number: 8929692
    Abstract: Provided is an optical integrated device comprising a first waveguide that is formed on a substrate and includes a first optical path; an electrode formed on the first waveguide; a second waveguide that is formed on the substrate and includes a second optical path; and a transparent waveguide that is formed on the substrate between the first waveguide and the second waveguide, and includes a transparent core that serves as an optical path and is formed of a material having higher bandgap energy than the first optical path. The electrode is formed above the first waveguide and is not formed above the transparent waveguide, and elements including the first waveguide are optically active elements that operate according to current injected thereto.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: January 6, 2015
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Norihiro Iwai, Hirotatsu Ishii
  • Patent number: 8842707
    Abstract: A semiconductor laser element includes: a window region including a disordered portion formed by diffusion of a group-III vacancy, the diffusion promoted by providing on the window region a promoting film that absorbs a predetermined atom; a non-window region including an active layer of a quantum well structure; and a difference equal to or larger than 50 meV between an energy band gap in the window region and an energy band gap in the non-window region.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: September 23, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Hidehiro Taniguchi, Hirotatsu Ishii, Takeshi Namegaya
  • Patent number: 8619831
    Abstract: Included are: an active layer provided between an upper multilayer film reflecting mirror and a lower multilayer film reflecting mirror formed on a GaAs substrate and formed of a periodic structure of a low-refractive-index layer formed of AlxGa1-xAs (0.8?x?1) and a high-refractive-index layer formed of AlyGa1-yAs (0?y?x), at least one of the low-refractive-index layer and the high-refractive-index layer being of n-type; and a lower electrode provided between the lower multilayer film reflecting mirror and the active layer and configured to inject an electric current into the active layer.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: December 31, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yasumasa Kawakita, Takeo Kageyama, Hitoshi Shimizu, Hirotatsu Ishii
  • Publication number: 20130250993
    Abstract: Included are: an active layer provided between an upper multilayer film reflecting mirror and a lower multilayer film reflecting mirror formed on a GaAs substrate and formed of a periodic structure of a low-refractive-index layer formed of AlxGa1-xAs (0.8?x?1) and a high-refractive-index layer formed of AlyGa1-yAs (0?y?x), at least one of the low-refractive-index layer and the high-refractive-index layer being of n-type; and a lower electrode provided between the lower multilayer film reflecting mirror and the active layer and configured to inject an electric current into the active layer.
    Type: Application
    Filed: May 20, 2013
    Publication date: September 26, 2013
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yasumasa KAWAKITA, Takeo KAGEYAMA, Hitoshi SHIMIZU, Hirotatsu ISHII
  • Patent number: 8488644
    Abstract: A semiconductor laser element includes a first electrode, a second electrode, a first reflecting mirror, a second reflecting mirror, and a resonator. The resonator includes an active layer, a current confinement layer, a first semiconductor layer having a first doping concentration formed at a side opposite to the active layer across the current confinement layer, and a second semiconductor layer having a second doping concentration higher than the first doping concentration formed between the first semiconductor layer and the current confinement layer. The first electrode is provided to contact a part of a surface of the first semiconductor layer. The first semiconductor layer has a diffusion portion into which a component of the first electrode diffuses. The second semiconductor layer contacts the diffusion portion. The second semiconductor layer is positioned at a node of a standing wave at a time of laser oscillation of the semiconductor laser element.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: July 16, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Suguru Imai, Keishi Takaki, Norihiro Iwai, Kinuka Tanabe, Hitoshi Shimizu, Hirotatsu Ishii
  • Patent number: 8472492
    Abstract: Included are: an active layer provided between an upper multilayer film reflecting mirror and a lower multilayer film reflecting mirror formed on a GaAs substrate and formed of a periodic structure of a low-refractive-index layer formed of AlxGa1-xAs (0.8?x?1) and a high-refractive-index layer formed of AlyGa1-yAs (0?y?x), at least one of the low-refractive-index layer and the high-refractive-index layer being of n-type; and a lower electrode provided between the lower multilayer film reflecting mirror and the active layer and configured to inject an electric current into the active layer.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: June 25, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yasumasa Kawakita, Takeo Kageyama, Hitoshi Shimizu, Hirotatsu Ishii
  • Publication number: 20130064497
    Abstract: Provided is an optical integrated device comprising a first waveguide that is formed on a substrate and includes a first optical path; an electrode formed on the first waveguide; a second waveguide that is formed on the substrate and includes a second optical path; and a transparent waveguide that is formed on the substrate between the first waveguide and the second waveguide, and includes a transparent core that serves as an optical path and is formed of a material having higher bandgap energy than the first optical path. The electrode is formed above the first waveguide and is not formed above the transparent waveguide, and elements including the first waveguide are optically active elements that operate according to current injected thereto.
    Type: Application
    Filed: August 27, 2012
    Publication date: March 14, 2013
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Norihiro IWAI, Hirotatsu ISHII
  • Publication number: 20120320447
    Abstract: There is provided a semiconductor laser that includes a dielectric multilayer mirror (116) with a structure including high-refractive-index dielectric layers and low-refractive-index dielectric layers arranged periodically, and a cavity (110) that includes the dielectric multilayer mirror (116), on at least one facet thereof, and an active layer (105). A non-linear layer that is non-linear with respect to primary mode laser light is formed in at least one layer of either the high-refractive-index dielectric layers or the low-refractive-index dielectric layers.
    Type: Application
    Filed: December 20, 2011
    Publication date: December 20, 2012
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Keishi TAKAKI, Hirotatsu ISHII, Norihiro IWAI, Shinya OOTOMO
  • Patent number: 8222639
    Abstract: An interfacial reaction suppressing layer 12 formed between an oxide layer including a ZnO single crystal substrate 11 and a nitride layer including an InGaN semiconductor layer 13 restrains the interfacial reaction between the oxide layer and the nitride layer and formation of a reaction layer (Al2ZnO4) at the interface, which makes it possible to grow and thermally treat the InGaN semiconductor layer 13 at a high temperature. Thus, a crystal quality of the InGaN semiconductor layer 13 is improved.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: July 17, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Tatsuyuki Shinagawa, Hirotatsu Ishii, Akihiko Kasukawa