Patents by Inventor Hiroto Suematsu

Hiroto Suematsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10705164
    Abstract: A pair of detection coils, one coil provided on each side of a sample container across the width of the sample container. The detection coil is made of a superconductor and has an electric circuit pattern capable of detecting a magnetic resonance signal from a sample. The detection coil includes a lateral component intersectional to a static magnetic field H0 and having a part disposed at a position spaced away from a detection region, as compared to the remaining part.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: July 7, 2020
    Assignee: JEOL Ltd.
    Inventors: Fumio Hobo, Katsuyuki Toshima, Shinji Nakamura, Shigenori Tsuji, Ryoji Tanaka, Hiroto Suematsu
  • Patent number: 10073153
    Abstract: A device for attaching and detaching a cryogenic probe to and from a nuclear magnetic resonance (NMR) spectrometer. The device permits the probe to be loaded in the spectrometer in a shortened time and achieves high measurement throughput. The device has loading platforms (11-1, 11-2) on which cryogenic probes (P1, P2) are loaded. Each loading platform has a horizontal drive mechanism, a vertical drive mechanism, and a spacing mechanism. The device further includes probe cooling devices (14-1, 14-2) for circulating a refrigerant to and from the cryogenic probes (P1, P2) via transfer tubes (12-1, 12-2) made of a flexible material, thus cooling the probes (P1, P2). A temperature-controlled gas feeder (18) supplies a temperature variable gas for temperature adjustment to the probes (P1, P2). A vacuum pumping system (15) evacuates the interiors of the probes (P1, P2) via vacuum pipes (17-1, 17-2) made of a flexible material.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: September 11, 2018
    Assignee: JEOL Ltd.
    Inventors: Masanori Hirose, Yoshiaki Yamakoshi, Masahide Nishiyama, Shinji Nakamura, Katsuyuki Toshima, Fumio Hobo, Terumasa Okada, Shigenori Tsuji, Ryoji Tanaka, Hiroto Suematsu
  • Publication number: 20170336485
    Abstract: A pair of detection coils, one coil provided on each side of a sample container across the width of the sample container. The detection coil is made of a superconductor and has an electric circuit pattern capable of detecting a magnetic resonance signal from a sample. The detection coil includes a lateral component intersectional to a static magnetic field H0 and having a part disposed at a position spaced away from a detection region, as compared to the remaining part.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 23, 2017
    Inventors: Fumio Hobo, Katsuyuki Toshima, Shinji Nakamura, Shigenori Tsuji, Ryoji Tanaka, Hiroto Suematsu
  • Patent number: 9494663
    Abstract: An NMR spectrometer and method in the following three steps are performed. (1) An external magnetic field is set to H0+?H (where 4H>0). When the detection coil made of the superconducting material is still in a normal state, a magnetic field stronger than the ultimate target static magnetic field strength H0 by ?H is applied to the detection coil. (2) The detection coil made of the superconducting material is cooled down to T0 lower than its critical temperature Tc to bring the coil into a superconducting state while the external magnetic field H0+?H is applied to the detection coil. (3) The external magnetic field is lowered from H0+?H to H0 such that the applied external magnetic field is decreased by ?H while the detection coil is kept in the superconducting state.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: November 15, 2016
    Assignee: JEOL Ltd.
    Inventors: Shigenori Tsuji, Fumio Hobo, Ryoji Tanaka, Hiroto Suematsu
  • Publication number: 20150168518
    Abstract: A device for attaching and detaching a cryogenic probe to and from a nuclear magnetic resonance (NMR) spectrometer. The device permits the probe to be loaded in the spectrometer in a shortened time and achieves high measurement throughput. The device has loading platforms (11-1, 11-2) on which cryogenic probes (P1, P2) are loaded. Each loading platform has a horizontal drive mechanism, a vertical drive mechanism, and a spacing mechanism. The device further includes probe cooling devices (14-1, 14-2) for circulating a refrigerant to and from the cryogenic probes (P1, P2) via transfer tubes (12-1, 12-2) made of a flexible material, thus cooling the probes (P1, P2). A temperature-controlled gas feeder (18) supplies a temperature variable gas for temperature adjustment to the probes (P1, P2). A vacuum pumping system (15) evacuates the interiors of the probes (P1, P2) via vacuum pipes (17-1, 17-2) made of a flexible material.
    Type: Application
    Filed: November 18, 2014
    Publication date: June 18, 2015
    Inventors: Masanori Hirose, Yoshiaki Yamakoshi, Masahide Nishiyama, Shinji Nakamura, Katsuyuki Toshima, Fumio Hobo, Terumasa Okada, Shigenori Tsuji, Ryoji Tanaka, Hiroto Suematsu
  • Patent number: 7872476
    Abstract: An NMR probe is offered which enables a 1H/19F compatibility mode having a sample coil, a hollow tubular body, and two rod electrodes disposed inside the tubular body substantially in a parallel relationship to each other. The tubular body is formed by a conductive wall at ground potential. An RF input-output portion corresponding to the resonant frequency of 1H nucleus is connected with the one end of the coil via a tuning and matching device. Another RF input-output port corresponding to the resonant frequency of 19F nucleus is connected with an end of the coil via another tuning and matching device.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: January 18, 2011
    Assignee: JEOL Ltd.
    Inventors: Hiroshi Ikeda, Yoshiki Kida, Hiroto Suematsu
  • Patent number: 7714579
    Abstract: An NMR probe permits measurements to be made with its inner coil without replacing the probe. The NMR probe has three coils disposed to surround a sample tube. An inner coil can resonate with the HF and LF. An intermediate coil can resonate with the HF and LF, and produces an RF magnetic field perpendicular to the RF field produced by the inner coil. An outermost coil can resonate at least at a lock frequency. The outermost coil produces an RF magnetic field which is perpendicular to the RF field produced by the intermediate coil but which is coincident in direction with the RF field produced by the inner coil.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: May 11, 2010
    Assignee: Jeol Ltd.
    Inventors: Hiroto Suematsu, Yoshiki Kida, Yoshiaki Yamakoshi, Hiroshi Ikeda, Tetsuo Miyamoto, Ryoji Tanaka
  • Publication number: 20090261829
    Abstract: An NMR probe is offered which enables a 1H/19F compatibility mode having a sample coil, a hollow tubular body, and two rod electrodes disposed inside the tubular body substantially in a parallel relationship to each other. The tubular body is formed by a conductive wall at ground potential. An RF input-output portion corresponding to the resonant frequency of 1H nucleus is connected with the one end of the coil via a tuning and matching device. Another RF input-output port corresponding to the resonant frequency of 19F nucleus is connected with an end of the coil via another tuning and matching device.
    Type: Application
    Filed: April 14, 2009
    Publication date: October 22, 2009
    Applicant: JEOL LTD.
    Inventors: Hiroshi Ikeda, Yoshiki Kida, Hiroto Suematsu
  • Publication number: 20080297156
    Abstract: An NMR probe permits measurements to be made with its inner coil without replacing the probe. The NMR probe has three coils disposed to surround a sample tube. An inner coil can resonate with the HF and LF. An intermediate coil can resonate with the HF and LF, and produces an RF magnetic field perpendicular to the RF field produced by the inner coil. An outermost coil can resonate at least at a lock frequency. The outermost coil produces an RF magnetic field which is perpendicular to the RF field produced by the intermediate coil but which is coincident in direction with the RF field produced by the inner coil.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 4, 2008
    Applicant: JEOL LTD.
    Inventors: Hiroto Suematsu, Yoshiki Kida, Yoshiaki Yamakoshi, Hiroshi Ikeda, Tetsuo Miyamoto, Ryoji Tanaka