Patents by Inventor Hiroyuki Doi

Hiroyuki Doi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7576014
    Abstract: A semiconductor device with a fuse 3a to be cut for a circuit modification, of which passivation film coating the uppermost wiring layer is formed in a two-layer structure including a first insulating film 11 with high filling capability and a second insulating film 12 blocking penetration of moisture or impurities. An opening 21 formed in a specific depth through the insulating films on the fuse 3a is coated by a third insulating film 13 with the blocking capability. This prevents the penetration of moisture or impurities, and the corrosion of the fuse 3a.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: August 18, 2009
    Assignee: Panasonic Corporation
    Inventors: Takashi Miyake, Hiroyuki Doi
  • Patent number: 7547188
    Abstract: A Ni-based alloy member has resistance against grain boundary fracture, fatigue strength, and oxidation resistance at temperatures near 1000° C. or higher. The Ni-based alloy member includes a non-repaired region made of a Ni-based alloy base and a region repaired by welding, which is formed on the non-repaired region and which is made of a buildup-welded layer, the buildup-welded layer being made of a Ni-based alloy containing, by weight, 15% or less of Co, 18-22% of Cr, 0.8-2.0% of Al, 5.0% or less of Ta, 0.5% or less of Mo, 0.5% or less of Ti, 13-18% of W, 0.05-0.13% of C, 0.06% or less of Zr, 0.015% or less of B, 0.4-1.2% of Mn, and 0.1-0.3% of Si, the balance of the alloy being preferably essentially made of Ni.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: June 16, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Shinya Imano, Hiroyuki Doi, Kunihiro Ichikawa, Katsumi Tanaka
  • Publication number: 20090142187
    Abstract: A seal structure for a steam turbine is provided, which is capable of suppressing transfer of heat generated by a friction between a rotating portion and a fixed portion to the rotating portion and of suppressing an increase in the temperature of the rotating portion. A labyrinth seal device serves to suppress the amount of steam leaking from a clearance present between each stator blade (fixed portion) of the steam turbine and a rotor (rotating portion). The seal structure for the steam turbine is formed to ensure that permeable spacers made of a permeable metal are provided on the rotor and a seal stationary body and face respective seal fins provided in the labyrinth seal device.
    Type: Application
    Filed: December 2, 2008
    Publication date: June 4, 2009
    Inventors: Kenjiro NARITA, Haruyuki Yamazaki, Hiroyuki Doi, Kei Kobayashi, Hajime Toriya
  • Publication number: 20090123290
    Abstract: A Ni-based alloy member has resistance against grain boundary fracture, fatigue strength, and oxidation resistance at temperatures near 1000° C. or higher. The Ni-based alloy member includes a non-repaired region made of a Ni-based alloy base and a region repaired by welding, which is formed on the non-repaired region and which is made of a buildup-welded layer, the buildup-welded layer being made of a Ni-based alloy containing, by weight, 15% or less of Co, 18-22% of Cr, 0.8-2.0% of Al, 5.0% or less of Ta, 0.5% or less of Mo, 0.5% or less of Ti, 13-18% of W, 0.05-0.13% of C, 0.06% or less of Zr, 0.015% or less of B, 0.4-1.2% of Mn, and 0.1-0.3% of Si, the balance of the alloy being preferably essentially made of Ni.
    Type: Application
    Filed: February 17, 2006
    Publication date: May 14, 2009
    Inventors: Shinya Imano, Hiroyuki Doi, Kunihiro Ichikawa, Katsumi Tanaka
  • Publication number: 20090104040
    Abstract: A nickel (Ni) based alloy for forging includes: 0.001 to 0.1 wt. % of carbon (C); 12 to 23 wt. % of chromium (Cr); 3.5 to 5.0 wt. % of aluminum (Al); 5 to 12 combined wt. % of tungsten (W) and molybdenum (Mo) in which the Mo content is 5 wt. % or less; a negligible small amount of titanium (Ti), tantalate (Ta) and niobium (Nb); and the balance of Ni and inevitable impurities.
    Type: Application
    Filed: October 17, 2008
    Publication date: April 23, 2009
    Inventors: Shinya IMANO, Hiroyuki Doi, Jun Sato
  • Publication number: 20090068052
    Abstract: The invention is of a heat resisting martensitic steel comprising, by weight, 0.05 to 0.30% C, not more than 0.50% Si, not more than 0.60% Mn, 8.0 to 13.0% Cr, 0.5 to 3.0% Ni, 1.0 to 3.0% Mo, 0.1 to 1.5% W, 0.5 to 4% Co, 0.05 to 0.35% V, 0.02 to 0.30% in total of one or two elements selected from the group consisting of Nb and Ta, and 0.02 to 0.10% N, wherein a value of the square of a difference between the Ni amount and the Co amount, and the Ni amount are not more than values determined by a straight line drawn on a point A (1.0, 2.7%) and a point B (2.5, 1.0%) in the orthogonal coordinates shown in the attached drawing of FIG. 2 which represents a relationship between the above square value and the Ni amount, and an amount ratio of Mo/(Mo+0.5W) is not less than 0.5. The heat resisting steel is suitably used in various components of a gas turbine.
    Type: Application
    Filed: May 21, 2008
    Publication date: March 12, 2009
    Applicant: HITACHI, LTD.
    Inventors: Masahiko Arai, Hirotsugu Kawanaka, Hiroyuki Doi, Isao Takehara, Hidetoshi Kuroki
  • Publication number: 20090020795
    Abstract: A solid-state imaging element includes a photodiode formed in an upper portion of a semiconductor substrate to perform a photoelectric conversion, a silicon dioxide film formed on the substrate to cover the photodiode, and a silicon nitride film formed on the silicon dioxide film. The silicon nitride film has a thinner portion smaller in thickness than at least an end portion of the silicon nitride film entirely or partly over the photodiode.
    Type: Application
    Filed: July 14, 2008
    Publication date: January 22, 2009
    Inventors: Hiroyuki DOI, Ryohei MIYAGAWA, Hitoshi KURIYAMA
  • Patent number: 7459035
    Abstract: To provide a rotor material preferable for a steam turbine of which main steam temperature is 675° C. or more, particularly exceeding 700° C., and a steam turbine plant having a rotor formed by the material, the invention provides a steam turbine plant including a very-high-pressure turbine of which steam inlet temperature is 675 to 725° C. and steam outlet temperature is 650° C. or less, a high-pressure turbine, and a medium-low-pressure turbine, wherein a rotor of the very-high-pressure turbine is formed from a forged material of NiFe-base alloy containing: 14 to 18 weight % Cr, 15 to 45 weight % Fe, 1.0 to 2.0 weight % Al, 1.0 to 1.8 weight % Ti, C and N of which the sum is 0.05 or less weight %, and Nb in the range specified by the formula: 3.5?(Fe weight %)/20<(Nb weight %)<4.5?(Fe weight %)/20.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: December 2, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Shinya Imano, Hiroyuki Doi, Hirotsugu Kawanaka, Eiji Saitou
  • Publication number: 20080213099
    Abstract: An Ni—Fe based superalloy forging material including 30 to 40 wt % of Fe, 14 to 16 wt % of Cr, 1.2 to 1.7 wt % of Ti, 1.1 to 1.5 wt % of Al, 1.9 to 2.7 wt % of Nb, 0.05 wt % or less of C and the remainder of Ni and inevitable impurities is solution-treated and aged, and thereby ?? phase (Ni3Al) having an initial mean particle size of about 50 to about 100 nm is precipitated. This superalloy is excellent in high-temperature strength and high-temperature ductility and can produce a large forged product of 10 ton or more. Therefore, this material is suitable for use as the material of a steam turbine rotor having a main steam temperature of 650° C. or more.
    Type: Application
    Filed: August 10, 2007
    Publication date: September 4, 2008
    Inventors: Shinya IMANO, Hirotsugu KAWANAKA, Hiroyuki DOI, Tatsuya TAKAHASHI, Tsukasa AZUMA, Koji KAJIKAWA
  • Publication number: 20070163682
    Abstract: A Ni-based alloy hardened with the ? phase, which is able to exhibit not only superior strength at high temperatures, but also excellent hot corrosion resistance and oxidation resistance at high temperatures in spite of containing no Re or reducing the amount of Re. The Ni-based superalloy contains, by weight, C: 0.01 to 0.5%, B: 0.01 to 0.04%, Hf: 0.1 to 2.5%, Co: 0.8 to 15%, Ta: more than 0% but less than 8.5%, Cr: 1.5 to 16%, Mo: more than 0% but less than 1.0%, W: 5 to 14%, Ti: 0.1 to 4.75%, Al: 2.5 to 7%, Nb: more than 0 % but less than 4%, V: 0 to less than 1.0%, Zr: 0 to less than 0.1%, Re: 0 to less than 9%, at least one of platinum group elements: 0 to less than 0.5% in total, at least one of rare earth elements: 0 to less than 0.1% in total, and the rest being Ni except for unavoidable impurities.
    Type: Application
    Filed: November 2, 2006
    Publication date: July 19, 2007
    Inventors: Hideki Tamaki, Akira Yoshinari, Akira Okayama, Tsuyoshi Takano, Hiroyuki Doi
  • Publication number: 20070054147
    Abstract: A welding material composition, which is a nickel based super alloy having ?? phase and chromium carbides precipitated. The composition comprising 18 to 25% by weight of Co, 15 to 20% by weight of Cr, 1.5 to 5.5% by weight of Al, 5 to 14% by weight of W, 0.05 to 0.15% by weight of C, 0 to 0.02% by weight of B, 0 to 1% by weight of at least one of Ta, Nb, Ti, Mo, Re and Fe, 0 to 0.5% by weight of at least one of V, Zr, rare earth elements and Y, 0 to 1% by weight of Mn, 0 to 0.5% by weight of Si, and the balance being Ni.
    Type: Application
    Filed: November 6, 2006
    Publication date: March 8, 2007
    Inventors: Shinya Imano, Hiroyuki Doi, Kunihiro Ichikawa, Hideaki Ishii
  • Patent number: 7169241
    Abstract: A Ni-based alloy hardened with the ?? phase, which is able to exhibit not only superior strength at high temperatures, but also excellent hot corrosion resistance and oxidation resistance at high temperatures in spite of containing no Re or reducing the amount of Re. The Ni-based superalloy contains, by weight, C: 0.01 to 0.5%, B: 0.01 to 0.04%, Hf: 0.1 to 2.5%, Co: 0.8 to 15%, Ta: more than 0% but less than 8.5%, Cr: 1.5 to 16%, Mo: more than 0% but less than 1.0%, W: 5 to 14%, Ti: 0.1 to 4.75%, Al: 2.5 to 7%, Nb: more than 0% but less than 4%, V: 0 to less than 1.0%, Zr: 0 to less than 0.1%, Re: 0 to less than 9%, at least one of platinum group elements: 0 to less than 0.5% in total, at least one of rare earth elements: 0 to less than 0.1% in total, and the rest being Ni except for unavoidable impurities.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: January 30, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Hideki Tamaki, Akira Yoshinari, Akira Okayama, Tsuyoshi Takano, Hiroyuki Doi
  • Patent number: 7165325
    Abstract: A welding material composition, which is a nickel based super alloy having ?? phase and chromium carbides precipitated. The composition comprising 18 to 25% by weight of Co, 15 to 20% by weight of Cr, 1.5 to 5.5% by weight of Al, 5 to 14% by weight of W, 0.05 to 0.15% by weight of C, 0 to 0.02% by weight of B, 0 to 1% by weight of at least one of Ta, Nb, Ti, Mo, Re and Fe, 0 to 0.5% by weight of at least one of V, Zr, rare earth elements and Y, 0 to 1% by weight of Mn, 0 to 0.5% by weight of Si, and the balance being Ni.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: January 23, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Shinya Imano, Hiroyuki Doi, Kunihiro Ichikawa, Hideaki Ishii
  • Publication number: 20070014671
    Abstract: A pipe for a steam turbine is formed of a centrifugal casting material to achieve resistance against higher temperatures and improve reliability of the pipe by employing, as a pipe material, a centrifugal casting material normalized to contain uniform and finer crystal grains. The centrifugal casting material is made of steel having a columnar structure in the radial direction with the crystal grain size number of 5 or more in a plane perpendicular to the radial direction. The steel includes 0.05-0.5% by mass C, not more than 1.0% Si, 0.05-1.5% Mn, 0.01-2.5% Ni, 8.0-13.0% Cr, 0.05-2.5% Mo, not more than 3.0% W, 0.05-0.35% V, 0.01-0.5% Nb, not more than 5% Co, 0.01-0.1% N, not more than 0.03% B, and not more than 0.05% Al.
    Type: Application
    Filed: July 6, 2006
    Publication date: January 18, 2007
    Inventors: Masahiko Arai, Hirotsugu Kawanaka, Hiroyuki Doi, Kenichi Murata, Hajime Toriya
  • Publication number: 20060110935
    Abstract: A semiconductor device with a fuse 3a to be cut for a circuit modification, of which passivation film coating the uppermost wiring layer is formed in a two-layer structure including a first insulating film 11 with high filling capability and a second insulating film 12 blocking penetration of moisture or impurities. An opening 21 formed in a specific depth through the insulating films on the fuse 3a is coated by a third insulating film 13 with the blocking capability. This prevents the penetration of moisture or impurities, and the corrosion of the fuse 3a.
    Type: Application
    Filed: November 22, 2005
    Publication date: May 25, 2006
    Inventors: Takashi Miyake, Hiroyuki Doi
  • Publication number: 20060088411
    Abstract: A Ni—Fe based super alloy having high strength and toughness at high temperatures even when used in high-temperature environments, and a process of producing the super alloy. A turbine disk using the super alloy, a process of producing the turbine disk, a turbine spacer using the super alloy, and a process of producing the turbine spacer, as well as a gas turbine are also provided. The Ni—Fe based super alloy contains not more than 0.03% by weight of C, 14-18% of Cr, 15-45% of Fe, 0.5-2.0% of Al, not more than 0.05% of N, 0.5 to 2.0% of Ti, 1.5-5.0% of Nb, and Ni as a main ingredient.
    Type: Application
    Filed: August 18, 2005
    Publication date: April 27, 2006
    Inventors: Shinya Imano, Hiroyuki Doi, Isao Takehara, Shigeo Sakurai
  • Patent number: 6908141
    Abstract: A structural member usable for a car capable of demonstrating excellent flexural strength and absorbed energy performance and, moreover, capable of realizing weight reduction and is a structural member for a car being formed with a high-tensile steel pipe having a material property of not less than 1,400 MPa in tensile strength and not less than 5% in elongation. The structural member has a closed section structure which is provided as the configuration of the cross section perpendicular to the direction of the longitudinal axis. The cross-sectional configuration satisfies the following expression when a is defined as the maximum length of said cross-sectional configuration in the longitudinal direction, when b is defined as the maximum length thereof in the direction perpendicular to said direction, when L is defined as the circumferential length thereof, and when t is defined as the wall thickness of the steel pipe, 0.65?b/a?0.75, 0.014?t/L?0.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: June 21, 2005
    Assignee: Nippon Steel Corporation
    Inventors: Hiroyuki Doi, Takashi Motoyoshi, Tsutomu Takachi, Masanobu Kawase, Nobuyasu Yamada
  • Publication number: 20050074356
    Abstract: The invention is of a heat resisting martensitic steel comprising, by weight, 0.05 to 0.30% C, not more than 0.50% Si, not more than 0.60% Mn, 8.0 to 13.0% Cr, 0.5 to 3.0% Ni, 1.0 to 3.0% Mo, 0.1 to 1.5% W, 0.5 to 4% Co, 0.05 to 0.35% V, 0.02 to 0.30% in total of one or two elements selected from the group consisting of Nb and Ta, and 0.02 to 0.10% N, wherein a value of the square of a difference between the Ni amount and the Co amount, and the Ni amount are not more than values determined by a straight line drawn on a point A (1.0, 2.7%) and a point B (2.5, 1.0%) in the orthogonal coordinates shown in the attached drawing of FIG. 2 which represents a relationship between the above square value and the Ni amount, and an amount ratio of Mo/(Mo+0.5 W) is not less than 0.5. The heat resisting steel is suitably used in various components of a gas turbine.
    Type: Application
    Filed: January 16, 2004
    Publication date: April 7, 2005
    Inventors: Masahiko Arai, Hirotsugu Kawanaka, Hiroyuki Doi, Isao Takehara, Hidetoshi Kuroki
  • Patent number: 6861626
    Abstract: An induction heating roller device that keeps leakage current within specifications and prevents the occurrence of erroneous operations caused by common mode noise. The induction heating roller device includes an induction coil, a grounded heating roller magnetically coupled to the induction coil and heated by electro-magnetic induction. A power factor improving capacitor is connected in parallel to and near the induction coil and has a grounded intermediate point. A high-frequency power source biases the induction coil. The leakage current produced by distributed capacitance between the induction coil and the heating roller is returned to the high-frequency power source via the power factor improving capacitor. Thus, the leakage current does not flow out of the induction heating roller device.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: March 1, 2005
    Assignee: Harison Toshiba Lighting Corp.
    Inventors: Takayuki Ogasawara, Hiroyuki Doi, Ichiro Yokozeki, Manabu Kika, Toshiya Suzuki, Takaaki Tanaka, Syouhei Maeda
  • Publication number: 20040253102
    Abstract: To provide a rotor material preferable for a steam turbine of which main steam temperature is 675° C. or more, particularly exceeding 700° C., and a steam turbine plant having a rotor formed by the material, the invention provides a steam turbine plant including a very-high-pressure turbine of which steam inlet temperature is 675 to 725° C. and steam outlet temperature is 650° C. or less, a high-pressure turbine, and a medium-low-pressure turbine, wherein a rotor of the very-high-pressure turbine is formed from a forged material of NiFe-base alloy containing: 14 to 18 weight % Cr, 15 to 45 weight % Fe, 1.0 to 2.0 weight % Al, 1.0 to 1.8 weight % Ti, C and N of which the sum is 0.05 or less weight %, and Nb in the range specified by the formula: 3.5−(Fe weight %)/20<(Nb weight %)<4.5−(Fe weight %)/20.
    Type: Application
    Filed: June 10, 2004
    Publication date: December 16, 2004
    Inventors: Shinya Imano, Hiroyuki Doi, Hirotsugu Kawanaka, Eiji Saitou