Patents by Inventor Hisashi Genjima

Hisashi Genjima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240027923
    Abstract: A substrate processing apparatus for processing a substrate including a metal-containing resist film, includes: a heat treatment part configured to perform a heat treatment on the substrate having the film subjected to an exposing process; a developing process part configured to perform a developing process on the film of the substrate subjected to the heat treatment; and a gas contact part configured to bring the film into contact with an inert gas during a period after the exposing process and before the developing process.
    Type: Application
    Filed: July 17, 2023
    Publication date: January 25, 2024
    Inventors: Tomoya ONITSUKA, Shinichiro KAWAKAMI, Hisashi GENJIMA
  • Patent number: 11823897
    Abstract: There is provided a technique of forming an insulating film containing silicon oxide. A coating solution containing polysilazane is applied onto a wafer W, the solvent of the coating solution is volatilized, and the coating film is irradiated with ultraviolet rays in nitrogen atmosphere before performing a curing process. Dangling bonds are generated in silicon which is a pre-hydrolyzed site in polysilazane. Therefore, the energy for hydrolysis is reduced, and unhydrolyzed sites are reduced even when the temperature of the curing process is 350° C. Since efficient dehydration condensation occurs, the crosslinking rate is improved, and a dense (good-quality) insulation film is formed. By forming a protective film on the surface of the coating film to which ultraviolet rays irradiated, the reaction of dangling bonds prior to the curing process is suppressed.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: November 21, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Makoto Muramatsu, Hisashi Genjima
  • Patent number: 11631581
    Abstract: A technique for obtaining good film quality in forming a silicon-oxide-containing insulating film as a coating film on a substrate. A coating liquid containing polysilazane is applied to a wafer, a solvent in the coating liquid is volatilized, and then the coating film is irradiated with ultraviolet rays under a nitrogen atmosphere before performing a curing process. Thus, dangling bonds are likely to be formed at hydrolyzed portions in polysilazane. Since dangling bonds are formed in advance at portions in silicon to be hydrolyzed, productivity of hydroxyl groups is enhanced. That is, since an energy required for hydrolysis is reduced, the number of the portions remaining without being hydrolyzed is reduced even when the curing process is performed at a low temperature. Therefore, dehydration synthesis occurs efficiently, which increases a crosslinking rate and makes it possible to form a dense (good film quality) insulating film.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: April 18, 2023
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Makoto Muramatsu, Yusuke Saito, Hisashi Genjima, Hiroyuki Fujii
  • Patent number: 11574812
    Abstract: A substrate treatment method of treating a substrate using a block copolymer containing a hydrophilic polymer and a hydrophobic polymer, includes: a resist pattern formation step of forming a predetermined resist pattern by a resist film on the substrate; a thin film formation step of forming a thin film for suppressing deformation of the resist pattern on a surface of the resist pattern; a block copolymer coating step of applying a block copolymer to the substrate after the formation of the thin film; and a polymer separation step of phase-separating the block copolymer into the hydrophilic polymer and the hydrophobic polymer.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: February 7, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Makoto Muramatsu, Tadatoshi Tomita, Hisashi Genjima, Gen You, Takahiro Kitano
  • Publication number: 20220208547
    Abstract: There is provided a technique of forming an insulating film containing silicon oxide. A coating solution containing polysilazane is applied onto a wafer W, the solvent of the coating solution is volatilized, and the coating film is irradiated with ultraviolet rays in nitrogen atmosphere before performing a curing process. Dangling bonds are generated in silicon which is a pre-hydrolyzed site in polysilazane. Therefore, the energy for hydrolysis is reduced, and unhydrolyzed sites are reduced even when the temperature of the curing process is 350° C. Since efficient dehydration condensation occurs, the crosslinking rate is improved, and a dense (good-quality) insulation film is formed. By forming a protective film on the surface of the coating film to which ultraviolet rays irradiated, the reaction of dangling bonds prior to the curing process is suppressed.
    Type: Application
    Filed: March 17, 2022
    Publication date: June 30, 2022
    Inventors: Makoto Muramatsu, Hisashi Genjima
  • Patent number: 11315784
    Abstract: There is provided a technique of forming an insulating film containing silicon oxide. A coating solution containing polysilazane is applied onto a wafer W, the solvent of the coating solution is volatilized, and the coating film is irradiated with ultraviolet rays in nitrogen atmosphere before performing a curing process. Dangling bonds are generated in silicon which is a pre-hydrolyzed site in polysilazane. Therefore, the energy for hydrolysis is reduced, and unhydrolyzed sites are reduced even when the temperature of the curing process is 350° C. Since efficient dehydration condensation occurs, the crosslinking rate is improved, and a dense (good-quality) insulation film is formed. By forming a protective film on the surface of the coating film to which ultraviolet rays irradiated, the reaction of dangling bonds prior to the curing process is suppressed.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: April 26, 2022
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Makoto Muramatsu, Hisashi Genjima
  • Publication number: 20210159074
    Abstract: There is provided a technique of forming an insulating film containing silicon oxide. A coating solution containing polysilazane is applied onto a wafer W, the solvent of the coating solution is volatilized, and the coating film is irradiated with ultraviolet rays in nitrogen atmosphere before performing a curing process. Dangling bonds are generated in silicon which is a pre-hydrolyzed site in polysilazane. Therefore, the energy for hydrolysis is reduced, and unhydrolyzed sites are reduced even when the temperature of the curing process is 350° C. Since efficient dehydration condensation occurs, the crosslinking rate is improved, and a dense (good-quality) insulation film is formed. By forming a protective film on the surface of the coating film to which ultraviolet rays irradiated, the reaction of dangling bonds prior to the curing process is suppressed.
    Type: Application
    Filed: August 28, 2018
    Publication date: May 27, 2021
    Inventors: Makoto MURAMATSU, Hisashi GENJIMA
  • Publication number: 20200211838
    Abstract: A technique for obtaining good film quality in forming a silicon-oxide-containing insulating film as a coating film on a substrate. A coating liquid containing polysilazane is applied to a wafer, a solvent in the coating liquid is volatilized, and then the coating film is irradiated with ultraviolet rays under a nitrogen atmosphere before performing a curing process. Thus, dangling bonds are likely to be formed at hydrolyzed portions in polysilazane. Since dangling bonds are formed in advance at portions in silicon to be hydrolyzed, productivity of hydroxyl groups is enhanced. That is, since an energy required for hydrolysis is reduced, the number of the portions remaining without being hydrolyzed is reduced even when the curing process is performed at a low temperature. Therefore, dehydration synthesis occurs efficiently, which increases a crosslinking rate and makes it possible to form a dense (good film quality) insulating film.
    Type: Application
    Filed: March 13, 2018
    Publication date: July 2, 2020
    Inventors: Makoto MURAMATSU, Yusuke SAITO, Hisashi GENJIMA, Hiroyuki FUJII
  • Patent number: 10586711
    Abstract: A substrate processing method of processing a substrate using a block copolymer containing a hydrophilic polymer and a hydrophobic polymer, the substrate processing method includes: a block copolymer coating step of applying the block copolymer onto the substrate on which a predetermined projecting and recessed pattern is formed, to form a coating film of the block copolymer; a polymer separation step of phase-separating the block copolymer into the hydrophilic polymer and the hydrophobic polymer; a polymer removal step of selectively removing the hydrophilic polymer from the phase-separated block copolymer; and after the block copolymer coating step and before the polymer removal step, a film thickness reduction step of reducing a film thickness of the coating film of the block copolymer.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: March 10, 2020
    Assignee: Tokyo Electron Limited
    Inventors: Makoto Muramatsu, Tadatoshi Tomita, Hisashi Genjima, Takahiro Kitano
  • Publication number: 20190341255
    Abstract: A substrate treatment method of treating a substrate using a block copolymer containing a hydrophilic polymer and a hydrophobic polymer, includes: a resist pattern formation step of forming a predetermined resist pattern by a resist film on the substrate; a thin film formation step of forming a thin film for suppressing deformation of the resist pattern on a surface of the resist pattern; a block copolymer coating step of applying a block copolymer to the substrate after the formation of the thin film; and a polymer separation step of phase-separating the block copolymer into the hydrophilic polymer and the hydrophobic polymer.
    Type: Application
    Filed: July 19, 2019
    Publication date: November 7, 2019
    Inventors: Makoto MURAMATSU, Tadatoshi TOMITA, Hisashi GENJIMA, Gen YOU, Takahiro KITANO
  • Patent number: 10418242
    Abstract: A substrate treatment method of treating a substrate using a block copolymer containing a hydrophilic polymer and a hydrophobic polymer, includes: a resist pattern formation step of forming a predetermined resist pattern by a resist film on the substrate; a thin film formation step of forming a thin film for suppressing deformation of the resist pattern on a surface of the resist pattern; a block copolymer coating step of applying a block copolymer to the substrate after the formation of the thin film; and a polymer separation step of phase-separating the block copolymer into the hydrophilic polymer and the hydrophobic polymer.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: September 17, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Makoto Muramatsu, Tadatoshi Tomita, Hisashi Genjima, Gen You, Takahiro Kitano
  • Patent number: 10329144
    Abstract: A substrate treatment method using a block copolymer containing a hydrophilic polymer and a hydrophobic polymer includes a polymer separating step, wherein a ratio of a molecular weight of the hydrophilic polymer in the block copolymer is adjusted to 20% to 40% so that the hydrophilic polymers align at positions corresponding to a hexagonal close-packed structure in a plan view after the polymer separating step, and at the polymer separating step, a columnar first hydrophilic polymer is phase-separated on each of circular patterns of hydrophobic coating films and a columnar second hydrophilic polymer is phase-separated between the first hydrophilic polymers, and a diameter of the circular pattern is set so that the first hydrophilic polymers and the second hydrophilic polymers align at positions corresponding to the hexagonal close-packed structure in a plan view.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: June 25, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Makoto Muramatsu, Tadatoshi Tomita, Hisashi Genjima, Gen You, Takahiro Kitano, Takanori Nishi
  • Publication number: 20180269072
    Abstract: A substrate processing method of processing a substrate using a block copolymer containing a hydrophilic polymer and a hydrophobic polymer, the substrate processing method includes: a block copolymer coating step of applying the block copolymer onto the substrate on which a predetermined projecting and recessed pattern is formed, to form a coating film of the block copolymer; a polymer separation step of phase-separating the block copolymer into the hydrophilic polymer and the hydrophobic polymer; a polymer removal step of selectively removing the hydrophilic polymer from the phase-separated block copolymer; and after the block copolymer coating step and before the polymer removal step, a film thickness reduction step of reducing a film thickness of the coating film of the block copolymer.
    Type: Application
    Filed: October 20, 2016
    Publication date: September 20, 2018
    Inventors: Makoto MURAMATSU, Tadatoshi TOMITA, Hisashi GENJIMA, Takahiro KITANO
  • Publication number: 20180065843
    Abstract: A substrate treatment method using a block copolymer containing a hydrophilic polymer and a hydrophobic polymer includes a polymer separating step, wherein a ratio of a molecular weight of the hydrophilic polymer in the block copolymer is adjusted to 20% to 40% so that the hydrophilic polymers align at positions corresponding to a hexagonal close-packed structure in a plan view after the polymer separating step, and at the polymer separating step, a columnar first hydrophilic polymer is phase-separated on each of circular patterns of hydrophobic coating films and a columnar second hydrophilic polymer is phase-separated between the first hydrophilic polymers, and a diameter of the circular pattern is set so that the first hydrophilic polymers and the second hydrophilic polymers align at positions corresponding to the hexagonal close-packed structure in a plan view.
    Type: Application
    Filed: February 10, 2016
    Publication date: March 8, 2018
    Inventors: Makoto MURAMATSU, Tadatoshi TOMITA, Hisashi GENJIMA, Gen YOU, Takahiro KITANO, Takanori NISHI
  • Publication number: 20170287749
    Abstract: A substrate treatment method of treating a substrate using a block copolymer containing a hydrophilic polymer and a hydrophobic polymer, includes: a resist pattern formation step of forming a predetermined resist pattern by a resist film on the substrate; a thin film formation step of forming a thin film for suppressing deformation of the resist pattern on a surface of the resist pattern; a block copolymer coating step of applying a block copolymer to the substrate after the formation of the thin film; and a polymer separation step of phase-separating the block copolymer into the hydrophilic polymer and the hydrophobic polymer.
    Type: Application
    Filed: September 15, 2015
    Publication date: October 5, 2017
    Inventors: Makoto MURAMATSU, Tadatoshi TOMITA, Hisashi GENJIMA, Gen YOU, Takahiro KITANO
  • Patent number: 9418860
    Abstract: A method is provided for forming a patterned topography on a substrate. The substrate is provided with features formed atop that constitute an existing topography, and a template for directed self-assembly (DSA) is formed surrounding the exposed topography. Further to the method, the exposed template surfaces are chemically treated. In one embodiment, the surfaces are treated with a hydrogen-containing reducing chemistry to alter the surfaces to a less oxidized state. In another embodiment, the surfaces are coated with a first phase of a block copolymer (BCP) to render the surfaces more attractive to the first phase than prior to the coating. The template is then filled with the BCP to cover the exposed topography, and then the BCP is annealed within the template to drive self-assembly in alignment with the topography. Developing the annealed BCP exposes a DSA pattern immediately overlying the topography.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: August 16, 2016
    Assignee: Tokyo Electron Limited
    Inventors: Mark H. Somervell, Makoto Muramatsu, Benjamen M. Rathsack, Tadatoshi Tomita, Hisashi Genjima, Hidetami Yaegashi, Kenichi Oyama
  • Publication number: 20150111387
    Abstract: A method is provided for forming a patterned topography on a substrate. The substrate is provided with features formed atop that constitute an existing topography, and a template for directed self-assembly (DSA) is formed surrounding the exposed topography. Further to the method, the exposed template surfaces are chemically treated. In one embodiment, the surfaces are treated with a hydrogen-containing reducing chemistry to alter the surfaces to a less oxidized state. In another embodiment, the surfaces are coated with a first phase of a block copolymer (BCP) to render the surfaces more attractive to the first phase than prior to the coating. The template is then filled with the BCP to cover the exposed topography, and then the BCP is annealed within the template to drive self-assembly in alignment with the topography. Developing the annealed BCP exposes a DSA pattern immediately overlying the topography.
    Type: Application
    Filed: October 20, 2014
    Publication date: April 23, 2015
    Inventors: Mark H. Somervell, Makoto Muramatsu, Benjamen M. Rathsack, Tadatoshi Tomita, Hisashi Genjima, Hidetami Yaegashi, Kenichi Oyama