Patents by Inventor Hitoshi Matsuura

Hitoshi Matsuura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160240643
    Abstract: A switching loss is prevented from being deteriorated by suppressing increase in a gate capacitance due to a cell shrink of an IE type trench gate IGBT. A cell formation region is configured of a linear active cell region, a linear hole collector cell region, and a linear inactive cell region between them. Then, upper surfaces of the third and fourth linear trench gate electrodes which are formed so as to sandwich both sides of the linear hole collector cell region and electrically connected to an emitter electrode are positioned to be lower than upper surfaces of the first and second linear trench gate electrodes which are formed so as to sandwich both sides of the linear active cell region and electrically connected to a gate electrode.
    Type: Application
    Filed: April 26, 2016
    Publication date: August 18, 2016
    Inventor: Hitoshi MATSUURA
  • Publication number: 20160233019
    Abstract: A coil component is of the type where a helical coil is directly contacting a magnetic body where such coil component still meets the demand for electrical current amplification. The coil component is structured in such a way that a helical coil is covered with a magnetic body. The magnetic body is mainly constituted by magnetic alloy grains and contains substantially no glass component, and each of the magnetic alloy grains has an oxide film of the grain on its surface.
    Type: Application
    Filed: April 18, 2016
    Publication date: August 11, 2016
    Inventors: Hitoshi MATSUURA, Tomomi KOBAYASHI, Yoshikazu OKINO, Hidemi IWAO, Kenichiro NOGI, Kenji OTAKE
  • Patent number: 9368595
    Abstract: A switching loss is prevented from being deteriorated by suppressing increase in a gate capacitance due to a cell shrink of an IE type trench gate IGBT. A cell formation region is configured of a linear active cell region, a linear hole collector cell region, and a linear inactive cell region between them. Then, upper surfaces of the third and fourth linear trench gate electrodes which are formed so as to sandwich both sides of the linear hole collector cell region and electrically connected to an emitter electrode are positioned to be lower than upper surfaces of the first and second linear trench gate electrodes which are formed so as to sandwich both sides of the linear active cell region and electrically connected to a gate electrode.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: June 14, 2016
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Hitoshi Matsuura
  • Publication number: 20160163448
    Abstract: A method for manufacturing a magnetic grain compact, includes: providing multiple metal grains constituted by soft magnetic alloy containing Fe, Si, and a metal element M that oxidizes more easily than Fe; compacting the metal grains; and forming oxide film formed on a surface of the metal grains, and forming first bonding parts where adjacent metal grains are directly contacted and bonded together, and second bonding parts where adjacent metal grains are bonded together via the oxide film formed around the entire surface of said adjacent metal grains other than the first bonding parts, by applying heat treatment to the compacted metal grains, thereby obtaining a magnetic grain compact.
    Type: Application
    Filed: February 10, 2016
    Publication date: June 9, 2016
    Inventors: Hitoshi MATSUURA, Kenji OTAKE
  • Patent number: 9349517
    Abstract: A coil component is of the type where a helical coil is directly contacting a magnetic body where such coil component still meets the demand for electrical current amplification. The coil component is structured in such a way that a helical coil is covered with a magnetic body. The magnetic body is mainly constituted by magnetic alloy grains and does not contain glass component, and each of the magnetic alloy grains has an oxide film of the grain on its surface.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: May 24, 2016
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Hitoshi Matsuura, Tomomi Kobayashi, Yoshikazu Okino, Hidemi Iwao, Kenichiro Nogi, Kenji Otake
  • Patent number: 9349827
    Abstract: In an IGBT, defects generated by ion implantation for introduction of the P-type collector region or N-type buffer region into the N?-type drift region near the N-type buffer region remain to improve the switching speed, however the leak current increases by bringing a depletion layer into contact with the crystal defects at the off time. To avoid this, an IGBT is provided which includes an N-type buffer region having a higher concentration than that of an N?-type drift region and being in contact with a P-type on its backside, and a defect remaining region provided near the boundary between the N-type buffer region and the N?-type drift region. The N?-type drift region located on the front surface side with respect to the defect remaining region is provided with an N-type field stopping region having a higher concentration than that of the N?-type drift region.
    Type: Grant
    Filed: May 21, 2015
    Date of Patent: May 24, 2016
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Hitoshi Matsuura, Makoto Koshimizu, Yoshito Nakazawa
  • Patent number: 9293244
    Abstract: A magnetic material constituted by a grain compact 1 obtained by shaping metal grains 11 and then heat-treating them in an oxidizing ambience, wherein the metal grains 11 are made of a Fe—Cr—Si alloy and their FeMetal/(FeMetal+FeOxide) ratio as measured before shaping by XPS, with respect to the sum of integral values at the peaks of 709.6 eV, 710.7 eV and 710.9 eV, or FeOxide, and peak integral value at 706.9 eV, or FeMetal, is 0.2 or more.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: March 22, 2016
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Hitoshi Matsuura, Hideki Ogawa, Atsushi Tanada, Kiyoshi Tanaka, Kenji Otake
  • Patent number: 9287026
    Abstract: An object is to provide a magnetic material and coil component offering improved magnetic permeability and insulation resistance, while also offering improved high-temperature load, moisture resistance, water absorbency, and other reliability characteristics at the same time. A magnetic material that has multiple metal grains constituted by Fe—Si-M soft magnetic alloy (where M is a metal element that oxidizes more easily than Fe), as well as oxide film constituted by an oxide of the soft magnetic alloy and formed on the surface of the metal grains, wherein the magnetic material has bonding parts where adjacent metal grains are bonded together via the oxide film formed on their surface, as well as bonding parts where metal grains are directly bonded together in areas having no oxide film, and resin material is filled in at least some of the voids generating as a result of accumulation of the metal grains.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: March 15, 2016
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Hitoshi Matsuura, Masahiro Hachiya, Kenji Otake
  • Patent number: 9287033
    Abstract: A magnetic material contains multiple metal grains constituted by soft magnetic alloy and oxide film formed on a surface of the metal grains, which soft magnetic alloy includes Fe and a metal element that oxidizes more easily than Fe, wherein the magnetic material forms a grain compact having first bonding parts where adjacent metal grains are contacted and directly bonded together, second bonding parts where adjacent metal grains are bonded together via the oxide film formed around the entire surface of said adjacent metal grains other than the first bonding parts, and voids formed in an area other than the first and second bonding parts and surrounded by the oxide film.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: March 15, 2016
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Hitoshi Matsuura, Kenji Otake
  • Publication number: 20150340480
    Abstract: A switching loss is prevented from being deteriorated by suppressing increase in a gate capacitance due to a cell shrink of an IE type trench gate IGBT. A cell formation region is configured of a linear active cell region, a linear hole collector cell region, and a linear inactive cell region between them. Then, upper surfaces of the third and fourth linear trench gate electrodes which are formed so as to sandwich both sides of the linear hole collector cell region and electrically connected to an emitter electrode are positioned to be lower than upper surfaces of the first and second linear trench gate electrodes which are formed so as to sandwich both sides of the linear active cell region and electrically connected to a gate electrode.
    Type: Application
    Filed: May 19, 2015
    Publication date: November 26, 2015
    Inventor: Hitoshi MATSUURA
  • Patent number: 9165705
    Abstract: A laminated inductor having an internal conductor forming region, as well as a top cover region and bottom cover region formed in a manner sandwiching the internal conductor forming region between top and bottom; wherein the internal conductor forming region has a magnetic part formed with soft magnetic alloy grains, as well as helical internal conductor embedded in the magnetic part; and at least one of the top cover region and bottom cover region (or preferably both) is/are formed with soft magnetic alloy grains whose average grain size is greater than that of grains in the internal conductor forming region including the soft magnetic alloy grains constituting the magnetic part.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: October 20, 2015
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Hitoshi Matsuura, Takayuki Arai, Kenji Otake
  • Publication number: 20150255572
    Abstract: In an IGBT, defects generated by ion implantation for introduction of the P-type collector region or N-type buffer region into the N?-type drift region near the N-type buffer region remain to improve the switching speed, however the leak current increases by bringing a depletion layer into contact with the crystal defects at the off time. To avoid this, an IGBT is provided which includes an N-type buffer region having a higher concentration than that of an N?-type drift region and being in contact with a P-type on its backside, and a defect remaining region provided near the boundary between the N-type buffer region and the N?-type drift region. The N?-type drift region located on the front surface side with respect to the defect remaining region is provided with an N-type field stopping region having a higher concentration than that of the N?-type drift region.
    Type: Application
    Filed: May 21, 2015
    Publication date: September 10, 2015
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Hitoshi MATSUURA, Makoto KOSHIMIZU, Yoshito NAKAZAWA
  • Publication number: 20150236144
    Abstract: In a method of further enhancing the performance of a narrow active cell IE type trench gate IGBT having the width of active cells narrower than that of inactive cells, it is effective to shrink the cells so that the IE effects are enhanced. However, when the cells are shrunk simply, the switching speed is reduced due to increased gate capacitance. A cell formation area of the IE type trench gate IGBT is basically composed of first linear unit cell areas having linear active cell areas, second linear unit cell areas having linear hole collector areas and linear inactive cell areas disposed therebetween.
    Type: Application
    Filed: May 6, 2015
    Publication date: August 20, 2015
    Inventor: Hitoshi MATSUURA
  • Patent number: 9064839
    Abstract: In an IGBT, defects generated by ion implantation for introduction of the P-type collector region or N-type buffer region into the N?-type drift region near the N-type buffer region remain to improve the switching speed, however the leak current increases by bringing a depletion layer into contact with the crystal defects at the off time. To avoid this, an IGBT is provided which includes an N-type buffer region having a higher concentration than that of an N?-type drift region and being in contact with a P-type on its backside, and a defect remaining region provided near the boundary between the N-type buffer region and the N?-type drift region. The N?-type drift region located on the front surface side with respect to the defect remaining region is provided with an N-type field stopping region having a higher concentration than that of the N?-type drift region.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: June 23, 2015
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Hitoshi Matsuura, Makoto Koshimizu, Yoshito Nakazawa
  • Patent number: 9041050
    Abstract: In a method of further enhancing the performance of a narrow active cell IE type trench gate IGBT having the width of active cells narrower than that of inactive cells, it is effective to shrink the cells so that the IE effects are enhanced. However, when the cells are shrunk simply, the switching speed is reduced due to increased gate capacitance. A cell formation area of the IE type trench gate IGBT is basically composed of first linear unit cell areas having linear active cell areas, second linear unit cell areas having linear hole collector areas and linear inactive cell areas disposed therebetween.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: May 26, 2015
    Assignee: Renesas Electronics Corporation
    Inventor: Hitoshi Matsuura
  • Patent number: 9030285
    Abstract: A magnetic material suitable for a coil component has multiple metal grains constituted by Fe—Si-M soft magnetic alloy (where M is a metal element that oxidizes more easily than Fe) and oxide film formed on the surface of the metal grains, wherein such magnetic material includes a grain compact having bonding parts where adjacent metal grains are bonded together via the oxide film formed on their surface, and bonding parts where metal grains are directly bonded together in areas where oxide film does not exist. The magnetic material is capable of improving both insulation resistance and magnetic permeability.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: May 12, 2015
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Hitoshi Matsuura, Kenji Otake
  • Patent number: 8937350
    Abstract: A gate trench 13 is formed in a semiconductor substrate 10. The gate trench 13 is provided with a gate electrode 16 formed over a gate insulating film 14. A portion of the gate electrode 16 protrudes from the semiconductor substrate 10, and a sidewall 24 is formed over a side wall portion of the protruding portion. A body trench 25 is formed in alignment with an adjacent gate electrode 16. A cobalt silicide film 28 is formed over a surface of the gate electrode 16 and over a surface of the body trench 25. A plug 34 is formed using an SAC technique.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: January 20, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Hitoshi Matsuura, Yoshito Nakazawa, Tsuyoshi Kachi, Yuji Yatsuda
  • Patent number: 8813346
    Abstract: A coil-type electronic component has a coil inside or on the surface of its base material and is characterized in that: the base material is constituted by a group of grains of a soft magnetic alloy containing iron, silicon and other element that oxidizes more easily than iron; the surface of each soft magnetic alloy grain has an oxide layer formed on its surface as a result of oxidization of the grain; this oxide layer contains the other element that oxidizes more easily than iron by a quantity larger than that in the soft magnetic alloy grain; and grains are bonded with one another via this oxide layer.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: August 26, 2014
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Hideki Ogawa, Atsushi Tanada, Hitoshi Matsuura, Kiyoshi Tanaka, Hiroshi Kishi, Kenji Kawano
  • Publication number: 20140225703
    Abstract: A magnetic material includes a grain compact in which metal grains having oxide films are compacted, wherein the metal grains are constituted by Fe—Si-M soft magnetic alloy (where M represents a metal element that oxidizes more easily than iron), the metal grains in the grain compact are mutually bonded with adjacent metal grains by inter-bonding of their oxide films, and at least some of this bonding of oxide films takes the form of bonding of crystalline oxides, or preferably at least some of the bonding of oxides is based on continuous lattice bond. A coil component has a coil on an interior or surface of an element body wherein the element body uses the magnetic material.
    Type: Application
    Filed: January 5, 2012
    Publication date: August 14, 2014
    Applicant: TAIYO YUDEN CO., LTD.
    Inventors: Kenji Otake, Hitoshi Matsuura
  • Patent number: 8749339
    Abstract: A coil-type electronic component has a coil inside or on the surface of its base material wherein the base material in the coil-type electronic component is constituted by a group of grains of a soft magnetic alloy containing iron, silicon and other element that oxidizes more easily than iron; the surface of each soft magnetic alloy grain has an oxide layer formed on its surface as a result of oxidization of the grain; this oxide layer contains the other element that oxidizes more easily than iron by a quantity larger than that in the soft magnetic alloy grain; and grains are bonded with one another via this oxide layer. The coil-type electronic component can be produced at low cost and combines high magnetic permeability with high saturation magnetic flux density.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: June 10, 2014
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Hideki Ogawa, Atsushi Tanada, Hitoshi Matsuura, Kiyoshi Tanaka, Hiroshi Kishi, Kenji Kawano