Patents by Inventor Holger Muenz

Holger Muenz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240103382
    Abstract: An imaging optical unit comprises a plurality of minors for imaging an object field into an image field. The imaging optical unit has an image-side numerical aperture greater than 0.55. Each mirror is configured so that it can be measured by a testing optical unit having at least one DOE with a predetermined maximum diameter for test wavefront generation. For the complete measurement of all reflection surfaces of the minors, a maximum number of DOEs of the testing optical unit and/or a maximum number of DOE test positions of the at least one DOE of the testing optical unit comes into play, which is no more than five times the number of minors in the imaging optical unit. The result is an imaging optical unit in which a testing-optical measurement remains manageable even in the case of a design with an image-side numerical aperture which is relatively large.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 28, 2024
    Inventors: Hans-Jürgen Rostalski, Holger Münz, Christoph Menke
  • Publication number: 20240094637
    Abstract: An imaging optical unit comprises a plurality of mirrors for imaging an object field in an object plane into an image field in an image plane. An image-side numerical aperture is greater than 0.55. A ratio between an object/image offset and a meridional transverse direction is at least 0.5. A ratio between a working distance between the object plane and a reflection portion, closest to the object plane, of one of the mirrors and the meridional transverse dimension is at least 0.05. The working distance is at least 270 mm. This can yield an imaging optical unit, the use of which is relatively manageable in a projection exposure apparatus, such as for EUV projection lithography.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Inventors: Hans-Jürgen Rostalski, Holger Münz, Christoph Menke
  • Patent number: 11693241
    Abstract: An optical system for transmitting a source image includes a light guide, which defines a light transmission channel, an optical coupling arrangement and an optical decoupling arrangement, the coupling arrangement being designed to couple light emerging from the source image into the light guide arrangement in such a way that the light can propagate in the light guide arrangement by total reflection, and the decoupling arrangement being designed to decouple light that has propagated in the light guide arrangement from the light guide arrangement. The light guide arrangement comprises an optical deflection device, which, as viewed in the direction of propagation of the light in the light guide arrangement, is arranged between the coupling arrangement and the decoupling arrangement and is designed to deflect light ray bundles, emerging from the coupling arrangement at different beam angles and impinging divergently on the deflection device, in bundled manner towards the decoupling arrangement.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: July 4, 2023
    Assignee: tooz technologies GmbH
    Inventors: Matthias Hillenbrand, Hans-Juergen Dobschal, Artur Degen, Holger Muenz
  • Patent number: 11650510
    Abstract: A projection optical unit for microlithography includes a plurality of mirrors and has a numerical aperture having a value larger than 0.5. The plurality of mirrors includes at least three grazing incidence mirrors, which deflect a chief ray of a central object field point with an angle of incidence of greater than 45°. Different polarized light beams passing the projection optical unit are rotated in their polarization direction by different angles of rotation. The projection optical unit includes first and second groups of mirrors. The second group of mirrors includes the final two mirrors of the plurality of mirrors at the image side. A linear portion in the pupil dependence of the total geometrical polarization rotation of the projection optical unit is less than 20% of a linear portion in the pupil dependence of the geometrical polarization rotation of the second group of mirrors.
    Type: Grant
    Filed: December 16, 2021
    Date of Patent: May 16, 2023
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Hans-Juergen Rostalski, Holger Muenz, Christoph Menke
  • Patent number: 11506882
    Abstract: A method for supporting a user aiming at an object with a telescope includes determining and storing a first object position of the object relative to the telescope when a user aims at the object with the telescope and the telescope is located at a first telescope position, and supporting a user when aiming at the object again with the same telescope based on the stored first object position relative to the telescope.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: November 22, 2022
    Assignee: Carl Zeiss AG
    Inventors: Norbert Kerwien, Holger Muenz
  • Patent number: 11385465
    Abstract: A curved light guide can be used as an imaging optical unit or as part of an imaging optical unit for an HMD. The light guide can be arranged in front of at least one eye and have a concave curvature, as seen from the eye. The light can include a back surface facing the eye and a front surface facing away from the eye, an input coupling structure for coupling light into the light guide in such a way that light is guided through the light guide with reflection at the front surface and/or the back surface, and an output coupling structure for coupling out the light guided through the light guide. The light guide can have a diverging structure, the absolute value of the focal length of which is less than or equal to the radius of curvature of the light guide.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: July 12, 2022
    Assignee: tooz technologies GmbH
    Inventor: Holger Muenz
  • Publication number: 20220107570
    Abstract: A projection optical unit for microlithography includes a plurality of mirrors and has a numerical aperture having a value larger than 0.5. The plurality of mirrors includes at least three grazing incidence mirrors, which deflect a chief ray of a central object field point with an angle of incidence of greater than 45°. Different polarized light beams passing the projection optical unit are rotated in their polarization direction by different angles of rotation. The projection optical unit includes first and second groups of mirrors. The second group of mirrors includes the final two mirrors of the plurality of mirrors at the image side. A linear portion in the pupil dependence of the total geometrical polarization rotation of the projection optical unit is less than 20% of a linear portion in the pupil dependence of the geometrical polarization rotation of the second group of mirrors.
    Type: Application
    Filed: December 16, 2021
    Publication date: April 7, 2022
    Inventors: Hans-Juergen Rostalski, Holger Muenz, Christoph Menke
  • Patent number: 11137531
    Abstract: An optical transmission assembly for transmitting a source image includes a waveguide assembly, an incoupling assembly for coupling light emitted from the source image into the waveguide assembly, and an outcoupling assembly for coupling the light guided in the waveguide assembly out of the waveguide assembly. The light emitted from the source image and coupled into the waveguide assembly can be propagated between the incoupling assembly and the outcoupling assembly in the waveguide assembly by means of a total reflection. The incoupling assembly has at least one diffractive incoupling grating which is inclined by an angle (?) ranging from 20° to 60° relative to a normal of a boundary surface of the waveguide assembly, and/or the outcoupling assembly has at least one diffractive outcoupling grating which is inclined by an angle (?) ranging from 20° to 60° relative to a normal of a boundary surface of the waveguide assembly.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: October 5, 2021
    Assignee: tooz technologies GmbH
    Inventors: Wolfgang Singer, Holger Muenz
  • Publication number: 20200379254
    Abstract: Marked-up version An optical system for transmitting a source image includes a light guide, which defines a light transmission channel, an optical coupling arrangement and an optical decoupling arrangement, the coupling arrangement being designed to couple light emerging from the source image into the light guide arrangement in such a way that the light can propagate in the light guide arrangement by total reflection, and the decoupling arrangement being designed to decouple light that has propagated in the light guide arrangement from the light guide arrangement. The light guide arrangement comprises an optical deflection device, which, as viewed in the direction of propagation of the light in the light guide arrangement, is arranged between the coupling arrangement and the decoupling arrangement and is designed to deflect light ray bundles, emerging from the coupling arrangement at different beam angles and impinging divergently on the deflection device, in bundled manner towards the decoupling arrangement.
    Type: Application
    Filed: November 28, 2018
    Publication date: December 3, 2020
    Inventors: Matthias HILLENBRAND, Hans-Juergen DOBSCHAL, Artur DEGEN, Holger MUENZ
  • Patent number: 10777958
    Abstract: A beam reverser module for an optical power amplifier of a laser arrangement comprises at least one reflecting surface for receiving an incoming laser beam propagating in a first direction and reflecting the incoming laser beam into a second direction different from the first direction, wherein the at least one reflecting surface is a highly reflecting surface of at least one mirror.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: September 15, 2020
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Schall, Johannes Kraus, Holger Muenz, Ingrid Schuster, Willi Anderl, Ulrich Weber, Markus Bauer, Jeffrey Erxmeyer, Michel Le Maire
  • Publication number: 20200278531
    Abstract: A method for supporting a user aiming at an object with a telescope includes determining and storing a first object position of the object relative to the telescope when a user aims at the object with the telescope and the telescope is located at a first telescope position, and supporting a user when aiming at the object again with the same telescope based on the stored first object position relative to the telescope.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 3, 2020
    Inventors: Norbert Kerwien, Holger Muenz
  • Publication number: 20200271847
    Abstract: An optical transmission assembly for transmitting a source image includes a waveguide assembly, an incoupling assembly for coupling light emitted from the source image into the waveguide assembly, and an outcoupling assembly for coupling the light guided in the waveguide assembly out of the waveguide assembly. The light emitted from the source image and coupled into the waveguide assembly can be propagated between the incoupling assembly and the outcoupling assembly in the waveguide assembly by means of a total reflection. The incoupling assembly has at least one diffractive incoupling grating which is inclined by an angle (?) ranging from 20° to 60° relative to a normal of a boundary surface of the waveguide assembly, and/or the outcoupling assembly has at least one diffractive outcoupling grating which is inclined by an angle (?) ranging from 20° to 60° relative to a normal of a boundary surface of the waveguide assembly.
    Type: Application
    Filed: September 12, 2018
    Publication date: August 27, 2020
    Inventors: Wolfgang SINGER, Holger MUENZ
  • Publication number: 20200225475
    Abstract: A curved light guide can be used as an imaging optical unit or as part of an imaging optical unit for an HMD. The light guide can be arranged in front of at least one eye and have a concave curvature, as seen from the eye. The light can include a back surface facing the eye and a front surface facing away from the eye, an input coupling structure for coupling light into the light guide in such a way that light is guided through the light guide with reflection at the front surface and/or the back surface, and an output coupling structure for coupling out the light guided through the light guide. The light guide can have a diverging structure, the absolute value of the focal length of which is less than or equal to the radius of curvature of the light guide.
    Type: Application
    Filed: August 23, 2018
    Publication date: July 16, 2020
    Inventor: Holger MUENZ
  • Patent number: 10678033
    Abstract: A method for adjusting the magnification scale of an optical imaging device for exposing or inspecting substrates is provided. The optical imaging device includes a first optical element group, which includes a plurality of first optical elements in an imaging beam path. The method includes replacing optical elements of the first optical element group in the imaging beam path by optical elements of a second optical element group for the purposes of adjusting the magnification scale. The first optical element group includes two reflecting optical elements with first optical parameters, which define a first Petzval sum. The second optical element group includes two reflecting optical elements with second optical parameters, which define a second Petzval sum. The value of the first Petzval sum is at least substantially identical to the value of the second Petzval sum.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: June 9, 2020
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Holger Muenz
  • Patent number: 10656411
    Abstract: An optical system for field imaging and/or pupil imaging has an optical axis, a stop plane and an image plane. The optical system includes a lens element system that has three lens element groups, each including at least one lens element. The lens element groups are spaced apart from each other along the optical axis between the stop plane and the image plane. The three lens element groups have a first lens element material and/or a second lens element material that differs from the first lens element material.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: May 19, 2020
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Holger Muenz
  • Patent number: 10422985
    Abstract: An optical zoom device for setting an imaging scale of an imaging device, which is configured for imaging an object on an image plane of an image recording device using a microscope objective, comprising an optical element arrangement is disclosed. The optical element arrangement includes an object-side zoom entrance for optical connection to an objective exit, in particular a collimated objective exit, of the microscope objective and includes an image-side zoom exit for optical connection to an image recording entrance of the image recording device.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: September 24, 2019
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Alexander Epple, Holger Muenz
  • Patent number: 10394041
    Abstract: The disclosure provides to a birefringent polarizer assembly for spatially separating polarization states of a light beam, in particular in the spectral range below 300 nm. The assembly includes a first prism on the light input side and a further prism on the light output side, which are arranged along a principal light incidence direction. The first prism has a first light entrance surface and a first light exit surface. The further prism has a further light entrance surface, facing the first light exit surface, and a further light exit surface. The prisms in each case have an optical principal crystal axis oriented substantially perpendicularly to the principal light incidence direction. The crystal axes of two adjacent prisms are oriented perpendicularly to one another. A normal to the further light exit surface forms an angle not equal to 0° with the principal light incidence direction.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: August 27, 2019
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Bauer, Holger Muenz
  • Publication number: 20180210192
    Abstract: An optical system for field imaging and/or pupil imaging has an optical axis, a stop plane and an image plane. The optical system includes a lens element system that has three lens element groups, each including at least one lens element. The lens element groups are spaced apart from each other along the optical axis between the stop plane and the image plane. The three lens element groups have a first lens element material and/or a second lens element material that differs from the first lens element material.
    Type: Application
    Filed: March 21, 2018
    Publication date: July 26, 2018
    Inventor: Holger Muenz
  • Publication number: 20180102620
    Abstract: A beam reverser module for an optical power amplifier of a laser arrangement comprises at least one reflecting surface for receiving an incoming laser beam propagating in a first direction and reflecting the incoming laser beam into a second direction different from the first direction, wherein the at least one reflecting surface is a highly reflecting surface of at least one mirror.
    Type: Application
    Filed: December 4, 2017
    Publication date: April 12, 2018
    Inventors: Michael Schall, Johannes Kraus, Holger Muenz, Ingrid Schuster, Willi Anderl, Ulrich Weber, Markus Bauer, Jeffrey Erxmeyer, Michel Le Maire
  • Patent number: 9843153
    Abstract: A beam reverser module for an optical power amplifier of a laser arrangement comprises at least one reflecting surface for receiving an incoming laser beam propagating in a first direction and reflecting the incoming laser beam into a second direction different from the first direction, wherein the at least one reflecting surface is a highly reflecting surface of at least one mirror.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: December 12, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Schall, Johannes Kraus, Holger Muenz, Ingrid Schuster, Willi Anderl, Ulrich Weber, Markus Bauer, Jeffrey Erxmeyer, Michel Le Maire