Patents by Inventor Hongchuan JIANG

Hongchuan JIANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11085829
    Abstract: An infrared temperature-measurement probe, including: a probe housing; a reflector; and a reflector adjusting mechanism. The probe housing includes an inner wall, an outer wall, a cooling channel sandwiched between the inner wall and the outer wall, a chamber surrounded by the inner wall, and a light transmission hole communicating with the chamber. The reflector includes a mirror and a mirror frame. The reflector adjusting mechanism includes a motion controller, a drive coupling, and three control rods. The reflector and the three control rods are disposed in the chamber of the probe housing. The motion controller is disposed outside the chamber of the probe housing. The drive coupling is disposed between the motion controller and the three control rods, and the motion controller is adapted to move each of the three control rods via the drive coupling. The mirror is imbedded in and is supported by the mirror frame.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: August 10, 2021
    Assignee: UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA
    Inventors: Chao Wang, Yang Yang, Jing Jiang, Chengui Zhang, Zezhan Zhang, Fei Wang, Ying Duan, Jun Hu, Yueming Wang, Hongchuan Jiang, Huiyuan Geng, Jiexiong Ding, Li Du
  • Patent number: 10746604
    Abstract: An apparatus for measuring temperature of turbine blades, including: a radiation collection device, a data processing module; a master control unit (MCU); a calibration module; and a motion servo. The radiation collection device includes a scan reflector, a collimator lens, a first dichroic mirror, a first focus lens, a visible and near-infrared (VNIR) detector, a second dichroic mirror, a second focus lens, a short-wave infrared (SWIR) detector, a third focus lens, and a medium-wave infrared (MWIR) detector. The calibration module includes a calibration reflection mirror and a blackbody furnace. The scan reflector, the collimator lens, the first dichroic mirror, the second dichroic mirror, the third focus lens, and the MWIR detector are disposed successively along a first optical axis; the first dichroic mirror, the first focus lens, and the VNIR detector are disposed successively along a second optical axis that is perpendicular to the first optical axis.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: August 18, 2020
    Assignee: UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA
    Inventors: Chao Wang, Zezhan Zhang, Fei Wang, Chengui Zhang, Jun Hu, Yang Yang, Jing Jiang, Hongchuan Jiang, Yueming Wang, Yuhua Cheng, Jiexiong Ding, Li Du, Houjun Wang
  • Patent number: 10670464
    Abstract: A method of collecting radiation information of a turbine blade, the method including: 1) collecting a radiated light from the surface of the turbine blade, analyzing the radiated light using a spectrometer to calculate compositions and corresponding concentrations of combustion gas; 2) calculating an absorption coefficient of the combustion gas at different concentrations; 3) calculating a total absorption rate of the combustion gas at different radiation wavelengths under different concentrations of component gases; 4) obtaining a relationship between the radiation and a wavelength; 5) finding at least 3 bands with a least gas absorption rate; 6) calculating a distance between a wavelength of a strongest radiation point of the turbine blade and the center wavelength, and selecting three central wavelengths closest to the wavelength with the strongest radiation; and 7) acquiring radiation data of the turbine blade in the windows obtained in 6).
    Type: Grant
    Filed: January 14, 2018
    Date of Patent: June 2, 2020
    Assignee: UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA
    Inventors: Chao Wang, Ying Duan, Jun Hu, Zezhan Zhang, Yang Yang, Xueke Gou, Fei Wang, Jing Jiang, Jinguang Lv, Yueming Wang, Hongchuan Jiang, Li Du, Jiexiong Ding, Jingqiu Liang, Xianfu Liu, Xiaojiang Shi, Bing Xiong
  • Publication number: 20190003893
    Abstract: A method of collecting radiation information of a turbine blade, the method including: 1) collecting a radiated light from the surface of the turbine blade, analyzing the radiated light using a spectrometer to calculate compositions and corresponding concentrations of combustion gas; 2) calculating an absorption coefficient of the combustion gas at different concentrations; 3) calculating a total absorption rate of the combustion gas at different radiation wavelengths under different concentrations of component gases; 4) obtaining a relationship between the radiation and a wavelength; 5) finding at least 3 bands with a least gas absorption rate; 6) calculating a distance between a wavelength of a strongest radiation point of the turbine blade and the center wavelength, and selecting three central wavelengths closest to the wavelength with the strongest radiation; and 7) acquiring radiation data of the turbine blade in the windows obtained in 6).
    Type: Application
    Filed: January 14, 2018
    Publication date: January 3, 2019
    Inventors: Chao WANG, Ying DUAN, Jun HU, Zezhan ZHANG, Yang YANG, Xueke GOU, Fei WANG, Jing JIANG, Jinguang LV, Yueming WANG, Hongchuan JIANG, Li DU, Jiexiong DING, Jingqiu LIANG, Xianfu LIU, Xiaojiang SHI, Bing XIONG
  • Publication number: 20180364103
    Abstract: An infrared temperature-measurement probe, including: a probe housing; a reflector; and a reflector adjusting mechanism. The probe housing includes an inner wall, an outer wall, a cooling channel sandwiched between the inner wall and the outer wall, a chamber surrounded by the inner wall, and a light transmission hole communicating with the chamber. The reflector includes a mirror and a mirror frame. The reflector adjusting mechanism includes a motion controller, a drive coupling, and three control rods. The reflector and the three control rods are disposed in the chamber of the probe housing. The motion controller is disposed outside the chamber of the probe housing. The drive coupling is disposed between the motion controller and the three control rods, and the motion controller is adapted to move each of the three control rods via the drive coupling. The mirror is imbedded in and is supported by the mirror frame.
    Type: Application
    Filed: April 10, 2018
    Publication date: December 20, 2018
    Inventors: Chao WANG, Yang YANG, Jing JIANG, Chengui ZHANG, Zezhan ZHANG, Fei WANG, Ying DUAN, Jun HU, Yueming WANG, Hongchuan JIANG, Huiyuan GENG, Jiexiong DING, Li DU
  • Publication number: 20180348059
    Abstract: An apparatus for measuring temperature of turbine blades, including: a radiation collection device, a data processing module; a master control unit (MCU); a calibration module; and a motion servo. The radiation collection device includes a scan reflector, a collimator lens, a first dichroic mirror, a first focus lens, a visible and near-infrared (VNIR) detector, a second dichroic mirror, a second focus lens, a short-wave infrared (SWIR) detector, a third focus lens, and a medium-wave infrared (MWIR) detector. The calibration module includes a calibration reflection mirror and a blackbody furnace. The scan reflector, the collimator lens, the first dichroic mirror, the second dichroic mirror, the third focus lens, and the MWIR detector are disposed successively along a first optical axis; the first dichroic mirror, the first focus lens, and the VNIR detector are disposed successively along a second optical axis that is perpendicular to the first optical axis.
    Type: Application
    Filed: April 9, 2018
    Publication date: December 6, 2018
    Inventors: Chao WANG, Zezhan ZHANG, Fei WANG, Chengui ZHANG, Jun HU, Yang YANG, Jing JIANG, Hongchuan JIANG, Yueming WANG, Yuhua CHENG, Jiexiong DING, Li DU, Houjun WANG