Patents by Inventor Hongyuan Zong

Hongyuan Zong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230390743
    Abstract: A catalyst for producing dibasic amine by hydrogenation of dibasic nitrile contains the following components or reaction product thereof: a) an active component, wherein the active component comprises Ni and/or an oxide thereof; b) an auxiliary, wherein the auxiliary comprises one or more of Mg, Cu, Co, Zn, Zr, Mo and/or oxides thereof; C) support, wherein the relative content of ?-NiO in the catalyst is less than 2.0 a.u. A process for producing dibasic amine by hydrogenation of dibasic nitrile is also provided.
    Type: Application
    Filed: October 27, 2021
    Publication date: December 7, 2023
    Inventors: Yunbao TU, Hongyuan ZONG, Zhongneng LIU, Xiaoqing XU, Xue BAI, Xu LIU, Wei FU, Yanhong WANG
  • Publication number: 20230364572
    Abstract: A mixing device for mixing at least two particulate materials has a first riser used for loading first particles and a second riser surrounding and being coaxial with the riser and used for loading second particles. The upper part of the first riser extending beyond the top of the second riser. At least a part of the upper part of the first riser and at least a part of the upper part of the second riser being located inside a mixing zone container, such that the first and second particles are delivered to the inside of the mixing zone container by means of the first and second risers respectively and mixed.
    Type: Application
    Filed: September 15, 2021
    Publication date: November 16, 2023
    Inventors: Hongyuan ZONG, Xiaohong LI, Guozhen QI, Yongming JIN, Pan GAO, Yanxue WANG
  • Publication number: 20230348340
    Abstract: A device for mixing at least two granular materials has a first lifting tube used for loading first particles and a second lifting tube surrounding and coaxial to the first lifting tube and used for loading second particles. The upper part of said first lifting tube extends beyond the top of said second lifting tube, and at least part of the upper part of the first lifting tube and at least part of the upper part of the second lift tube are located inside a fast bed precipitator, allowing the first and second particles to be transported by means of the first and second lifting tubes to the interior of said fast bed precipitator and mixed.
    Type: Application
    Filed: September 15, 2021
    Publication date: November 2, 2023
    Inventors: Hongyuan ZONG, Xiaohong LI, Guozhen QI, Hongtao WANG, Zhinan YU, Yijun ZHENG, Li WANG
  • Publication number: 20230137544
    Abstract: The present invention relates to a process of converting methanol to olefins, comprising: feeding a feedstock comprising methanol to a fluidized bed reactor to contact with catalysts to produce an olefin product, wherein the process at least partially deactivates the catalysts to format least partially deactivated catalysts; feeding spent catalysts from the at least partially deactivated catalysts to a regenerator for regeneration, thereby forming regenerated catalysts, and returning the activated catalysts from the regenerated catalysts to the reactor via a regenerated catalyst line; characterized in that on the regenerated catalyst line, the oxygen content by volume in the gas phase component at the outlet of the regenerated catalyst line is controlled to be less than 0.1%, preferably less than 0.05%, and more preferably less than 0.01%.
    Type: Application
    Filed: March 12, 2021
    Publication date: May 4, 2023
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, SHANGHAI RESEARCH INSTITUTE OF PETROCHEMICAL TECHNOLOGY, SINOPEC
    Inventors: Hongyuan ZONG, Guozhen QI, Jing CAO, Hongtao WANG, Zhinan YU, Yijun ZHENG
  • Publication number: 20230139652
    Abstract: The invention relates to a method for regulating the gas velocity of the empty bed in a fluidized bed, wherein solid catalysts are used as fluidized particles or as a part of fluidized particles, characterized in that the gas velocity of the empty bed ? of the reaction zone of the fluidized bed is measured, compared with the bed average catalyst density ? of the solid catalysts in the reaction zone of the fluidized bed, the gas velocity of the empty bed ? being adjusted as required such that the gas velocity of the empty bed ? and the bed average catalyst density ? satisfy the formula (I) below: ?=0.356?3?4.319?2?35.57?+M; wherein M=250?; where ? is provided in m/s and ? is provided in kg/m3. The method can be used for the industrial production of lower olefin.
    Type: Application
    Filed: September 16, 2020
    Publication date: May 4, 2023
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, SHANGHAI RESEARCH INSTITUTE OF PETROCHEMICAL TECHNOLOGY, SINOPEC
    Inventors: Hongyuan ZONG, Guozhen QI, Jing CAO, Xiaohong LI, Zhinan YU, Li WANG
  • Patent number: 9828307
    Abstract: A method for producing isopropyl benzene includes the following steps. Step A: feeding a first stream containing benzene and a first stream containing propylene into a first reaction zone to contact a first catalyst for alkylation, and obtaining a first stream containing isopropyl benzene from the first reaction zone, dividing the first stream containing isopropyl benzene into a stream Ia and a stream IIa, the stream Ia circulating back into the first reaction zone and the stream IIa entering into a second reaction zone, having the stream entering the second reaction zone to contact a second catalyst for alkylation, and obtaining a second stream containing isopropyl benzene from the second reaction zone, and purifying at least a partial stream IIIa of the second stream containing isopropyl benzene, and obtaining a product isopropyl benzene.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: November 28, 2017
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, SHANGHAI RESEARCH INSTITUTE OF PETROCHEMICAL TECHNOLOGY SINOPEC
    Inventors: Huanxin Gao, Hongyuan Zong, Yilun Wei, Hui Yao, Ruifang Gu, Hua Fang, Shufang Ji
  • Publication number: 20150119619
    Abstract: A method for producing isopropyl benzene includes the following steps. Step A: feeding a first stream containing benzene and a first stream containing propylene into a first reaction zone to contact a first catalyst for alkylation, and obtaining a first stream containing isopropyl benzene from the first reaction zone, dividing the first stream containing isopropyl benzene into a stream Ia and a stream IIa, the stream Ia circulating back into the first reaction zone and the stream IIa entering into a second reaction zone, having the stream entering the second reaction zone to contact a second catalyst for alkylation, and obtaining a second stream containing isopropyl benzene from the second reaction zone, and purifying at least a partial stream IIIa of the second stream containing isopropyl benzene, and obtaining a product isopropyl benzene.
    Type: Application
    Filed: October 28, 2014
    Publication date: April 30, 2015
    Applicants: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology SINOPEC
    Inventors: Huanxin GAO, Hongyuan ZONG, Yilun WEI, Hui YAO, Ruifang GU, Hua FANG, Shufang JI
  • Patent number: 8236726
    Abstract: The present invention discloses a Ni-based catalyst useful in selective hydrogenation, comprising the following components supported on an alumina support: (a) 5.0 to 40.0 wt. % of metallic nickel or oxide(s) thereof; (b) 0.01 to 20.0 wt. % of at least one of molybdenum and tungsten, or oxide(s) thereof; (c) 0.01 to 10.0 wt. % of at least one rare earth element or oxide(s) thereof; (d) 0.01 to 2.0 wt. % of at least one metal from Group IA or Group IIA of the Periodic Table or oxide(s) thereof; (e) 0 to 15.0 wt. % of at least one selected from the group consisting of silicon, phosphorus, boron and fluorine, or oxide(s) thereof; and (f) 0 to 10.0 wt. % of at least one metal from Group IVB of the Periodic Table or oxide(s) thereof; with the percentages being based on the total weight of the catalyst. The catalyst is useful in the selective hydrogenation of a pyrolysis gasoline.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: August 7, 2012
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zhongneng Liu, Zaiku Xie, Xiaoling Wu, Minbo Hou, Xinghua Jiang, Hongyuan Zong
  • Patent number: 8110527
    Abstract: The present invention discloses an alumina support having multiple pore structure, wherein the alumina support has a specific surface area of from 40 to 160 m2/g and a total pore volume of from 0.3 to 1.2 cm3/g; a pore volume of pores having a pore diameter of less than 30 nm comprises 5 to 60% of the total pore volume; a pore volume of pores having a pore diameter of from 30 to 60 nm comprises 20 to 75% of the total pore volume; and a pore volume of pores having a pore diameter of larger than 60 nm comprises 20 to 60% of the total pore volume. The present invention further discloses a catalyst used for selective hydrogenation of a pyrolysis gasoline, comprising: (a) the alumina support according to the invention; and (b) 0.01 to 1.2 wt. % of metal palladium or palladium oxides, based on the weight of the alumina support.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: February 7, 2012
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zhongneng Liu, Zaiku Xie, Xinghua Jiang, Xiaoling Wu, Minbo Hou, Hongyuan Zong
  • Publication number: 20100176030
    Abstract: The present invention discloses an alumina support having multiple pore structure, wherein the alumina support has a specific surface area of from 40 to 160 m2/g and a total pore volume of from 0.3 to 1.2 cm3/g; a pore volume of pores having a pore diameter of less than 30 nm comprises 5 to 60% of the total pore volume; a pore volume of pores having a pore diameter of from 30 to 60 nm comprises 20 to 75% of the total pore volume; and a pore volume of pores having a pore diameter of larger than 60 nm comprises 20 to 60% of the total pore volume. The present invention further discloses a catalyst used for selective hydrogenation of a pyrolysis gasoline, comprising: (a) the alumina support according to the invention; and (b) 0.01 to 1.2 wt. % of metal palladium or palladium oxides, based on the weight of the alumina support.
    Type: Application
    Filed: August 2, 2007
    Publication date: July 15, 2010
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, SHANGHAN RESEARCH INSTITUTE OF PETROCHEMICAL TECHNOLOGY
    Inventors: Zhongneng Liu, Zaiku Xie, Xinghua Jiang, Xiaoling Wu, Minbo Hou, Hongyuan Zong
  • Publication number: 20090318739
    Abstract: The present invention discloses a Ni-based catalyst useful in selective hydrogenation, comprising the following components supported on an alumina support: (a) 5.0 to 40.0 wt. % of metallic nickel or oxide(s) thereof; (b) 0.01 to 20.0 wt. % of at least one of molybdenum and tungsten, or oxide(s) thereof; (c) 0.01 to 10.0 wt. % of at least one rare earth element or oxide(s) thereof; (d) 0.01 to 2.0 wt. % of at least one metal from Group IA or Group IIA of the Periodic Table or oxide(s) thereof; (e) 0 to 15.0 wt. % of at least one selected from the group consisting of silicon, phosphorus, boron and fluorine, or oxide(s) thereof; and (f) 0 to 10.0 wt. % of at least one metal from Group IVB of the Periodic Table or oxide(s) thereof; with the percentages being based on the total weight of the catalyst. The catalyst is useful in the selective hydrogenation of a pyrolysis gasoline.
    Type: Application
    Filed: September 20, 2007
    Publication date: December 24, 2009
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Zhongneng Liu, Zaiku Xie, Xiaoling Wu, Minbo Hou, Xinghua Jiang, Hongyuan Zong