Patents by Inventor Hongzhen Fang

Hongzhen Fang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10963222
    Abstract: A true random number generator with stable node voltage comprises a loop control logic, two inverters identical in structure, two D flip-flops identical in structure, a first PMOS transistor, a second PMOS transistor, a first NMOS transistor, a monitoring module and a post-processing module. Each inverter comprises a second NMOS transistor, a third NMOS transistor, a fourth NMOS transistor, a fifth NMOS transistor, a sixth NMOS transistor, a seventh NMOS transistor, an eighth NMOS transistor, a ninth NMOS transistor, a tenth NMOS transistor, a third PMOS transistor, a fourth PMOS transistor, a fifth PMOS transistor, a sixth PMOS transistor, a seventh PMOS transistor, an eighth PMOS transistor, a ninth PMOS transistor, a tenth PMOS transistor and an eleventh PMOS transistor. The true random number generator has the advantages of being able to eliminate the capacitive coupling effect and has high randomness.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: March 30, 2021
    Assignee: Wenzhou University
    Inventors: Pengjun Wang, Hongzhen Fang, Gang Li, Bo Chen
  • Publication number: 20200042289
    Abstract: A true random number generator with stable node voltage comprises a loop control logic, two inverters identical in structure, two D flip-flops identical in structure, a first PMOS transistor, a second PMOS transistor, a first NMOS transistor, a monitoring module and a post-processing module. Each inverter comprises a second NMOS transistor, a third NMOS transistor, a fourth NMOS transistor, a fifth NMOS transistor, a sixth NMOS transistor, a seventh NMOS transistor, an eighth NMOS transistor, a ninth NMOS transistor, a tenth NMOS transistor, a third PMOS transistor, a fourth PMOS transistor, a fifth PMOS transistor, a sixth PMOS transistor, a seventh PMOS transistor, an eighth PMOS transistor, a ninth PMOS transistor, a tenth PMOS transistor and an eleventh PMOS transistor. The true random number generator has the advantages of being able to eliminate the capacitive coupling effect and has high randomness.
    Type: Application
    Filed: May 21, 2019
    Publication date: February 6, 2020
    Applicant: Wenzhou University
    Inventors: Pengjun Wang, Hongzhen Fang, Gang Li, Bo Chen
  • Patent number: 10514894
    Abstract: A metastable true random number generator realized on an FPGA comprises a configurable delay chain including rough adjustment module and a fine adjustment module. The rough adjustment module comprises 32 rough adjustment cells each including a 1st 6-input lookup table and a two-to-one selector. The 1st input port of each 1st 6-input lookup table is connected to the 1st input terminal of the corresponding two-to-one selector, and the connecting terminal is the input terminal of the corresponding rough adjustment cell. The 2nd input port, the 3rd input port, the 4th input port, the 5th input port and the 6th input port of each 1st 6-input lookup table are all accessed to a low level 0. The output port of each 1st 6-input lookup table is connected to the 2nd input terminal of the corresponding two-to-one selector.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: December 24, 2019
    Assignee: Ningbo University
    Inventors: Pengjun Wang, Hongzhen Fang, Yuejun Zhang
  • Publication number: 20190155576
    Abstract: A metastable true random number generator realized on an FPGA comprises a configurable delay chain including rough adjustment module and a fine adjustment module. The rough adjustment module comprises 32 rough adjustment cells each including a 1st 6-input lookup table and a two-to-one selector. The 1st input port of each 1st 6-input lookup table is connected to the 1st input terminal of the corresponding two-to-one selector, and the connecting terminal is the input terminal of the corresponding rough adjustment cell. The 2nd input port, the 3rd input port, the 4th input port, the 5th input port and the 6th input port of each 1st 6-input lookup table are all accessed to a low level 0. The output port of each 1st 6-input lookup table is connected to the 2nd input terminal of the corresponding two-to-one selector.
    Type: Application
    Filed: July 25, 2018
    Publication date: May 23, 2019
    Applicant: Ningbo University
    Inventors: Pengjun Wang, Hongzhen Fang, Yuejun Zhang