Patents by Inventor Horace W. Furumoto

Horace W. Furumoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7118562
    Abstract: A long pulse alexandrite laser for treating dermatological specimens is disclosed. The use of alexandrite allows operation in the near-infrared, specifically in a 50 nm range surrounding 755. Infrared in this range allows good penetration while still achieving an acceptable ratio of hemoglobin to melanin absorption In addition, a method and related system for treating biologic tissue with pulse light includes generating a long effective output light pulse comprising a series of sub-pulses having a fractional duty cycle over a selected effective pulse duration, a periodicity that is less than the thermal relaxation time of a targeted structure, and an interpulse-delay between successive sub-pulses that is greater than the thermal relaxation time of non-targeted structures within the treatment area; and delivering the output light to the tissue of a patient.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: October 10, 2006
    Assignee: Cynosure, Inc.
    Inventor: Horace W. Furumoto
  • Publication number: 20040024390
    Abstract: A long pulse alexandrite laser for treating dermatological specimens is disclosed. The use of alexandrite allows operation in the near-infrared, specifically in a 50 nm range surrounding 755. Infrared in this range allows good penetration while still achieving an acceptable ratio of hemoglobin to melanin absorption. In operation, the laser generates pulses having a durations between 5 and 100 msec and fluences between 10 and 50 J/cm2. A light delivery system is provided that transmits the laser light output pulse to dermatological targets of a patient. The invention is also directed to a hair removal system. Here, it is desirable to use an index-matching application on the skin sections to be treated, and a visual indicator is thermo- or photo-responsive or otherwise responsive to the laser light pulse to generate a visible change. Also, the invention is directed to a combined sclerotherapy and light treatment method and kit for unwanted veins.
    Type: Application
    Filed: July 31, 2003
    Publication date: February 5, 2004
    Applicant: Cynosure, Inc.
    Inventor: Horace W. Furumoto
  • Patent number: 6632218
    Abstract: A long pulse alexandrite laser hair removal system is disclosed using light pulses of greater than 1 msec and fluences between 10 and 50 J/cm2. The use of an alexandrite laser allows good penetration while still achieving an acceptable combination of hemoglobin and melanin absorption. The use an index-matching application on the skin sections to be treated is also described. This substance will be absorbed into the epidermal layer to provide better coupling of the laser light into the skin. Also, and most advantageously, it will reduce reflections at the epidermal-dermal junction, which can lead to the damage of the skin. Also a topical thermal or photochromic indicator is suggested since skin irradiation in the near-infrared generally does not produce any characteristic skin color change as is found when using pulsed dye lasers, for example.
    Type: Grant
    Filed: October 21, 1999
    Date of Patent: October 14, 2003
    Assignee: Cynosure, Inc.
    Inventors: Horace W. Furumoto, George Cho, David H. McDaniel, Eric Koschmann, Antonio G. Rizzo
  • Patent number: 6610052
    Abstract: A long pulse alexandrite laser for treating dermatological specimens is disclosed. The use of alexandrite allows operation in the near-infrared, specifically in a 50 nm range surrounding 755. Infrared in this range allows good penetration while still achieving an acceptable ratio of hemoglobin to melanin absorption. In operation, the laser generates pulses having a durations between 5 and 100 msec and fluences between 10 and 50 J/cm2. A light delivery system is provided that transmits the laser light output pulse to dermatological targets of a patient. The invention is also directed to a hair removal system. Here, it is desirable to use an index-matching application on the skin sections to be treated, and a visual indicator is thermo- or photo-responsive or otherwise responsive to the laser light pulse to generate a visible change. Also, the invention is directed to a combined sclerotherapy and light treatment method and kit for unwanted veins.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: August 26, 2003
    Assignee: Cynosure, Inc.
    Inventor: Horace W. Furumoto
  • Publication number: 20030144713
    Abstract: A flashlamp-excited dye laser generating light pulses for therapy has a circulator which circulates a gain media through a dye cell. A controller coordinates operation by triggering flashlamps to excite the laser gain media while the circulator is circulating the gain media. This operation enables the effective generation of laser light pulses with a duration of at least one millisecond. The laser pulse is formed from many subpulses. If the flow velocity of dye solution is great enough such that the new solution enters the resonant cavity before the solutions in the cavity are substantially spent, subsequent subpulses are not quenched, enabling the generation of ultra-long effective pulses with high fluences. Specifically, longer effective pulses of up to 50 msec are attainable with energies of up to 50 Joules. These energies enable reasonable spot sizes, which makes the invention relevant to cutaneous as well as deep tissue therapy, for example.
    Type: Application
    Filed: January 21, 2003
    Publication date: July 31, 2003
    Applicant: Cynosure, Inc.
    Inventor: Horace W. Furumoto
  • Patent number: 6579284
    Abstract: A long pulsed dye laser device for selective photothermolysis comprises at least two pulsed dye lasers, such as flash lamp excited dye lasers, each generating corresponding pulsed laser beams successively in time. These laser can be coordinated by a synchronizer that sequentially triggers the lasers. A combining network merges the pulse laser beams into a combined beam and a delivery system conveys the combined pulse laser beam to a patient. An example of a delivery device is a single optical fiber. This invention enables production of the necessary pulse widths, on the order of 2 msec, which can not be achieved by individual dye lasers, generally lower than 0.8 msec. Also disclosed is a selective photothermolysis method. This method comprises irradiating a tissue section of a patient with a pulsed laser beam having a changing color across a time period of the pulse.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: June 17, 2003
    Assignee: Cynosure, Inc.
    Inventors: Horace W. Furumoto, Harry L. Ceccon
  • Patent number: 6570900
    Abstract: In a dye laser system, a porous bed filter is loaded with dye prior to operation of the system. With repeated firings, the dye solution is filtered by the porous bed filter to remove by-products of the laser process. Solute concentration is monitored and dye and additives removed by the filter are replenished by a metering pump. Precise temperature control assures consistent filtering of dye by the filter for more consistent color and energy output. To control the metering pump, the differential output of a two-channel absorption detector is digitized. The digitized signal is loaded into a counter which drives the metering pump. The useful lifetime of the dye solution is enhanced by incorporating pH buffers in the solution.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: May 27, 2003
    Assignee: Cynosure, Inc.
    Inventors: Horace W. Furumoto, Harry L. Ceccon, George E. S. Cho, Mark P. Hacker
  • Patent number: 6547781
    Abstract: A flashlamp-excited dye laser generating light pulses for therapy has a circulator which circulates a gain media through a dye cell. A controller coordinates operation by triggering flashlamps to excite the laser gain media while the circulator is circulating the gain media. This operation enables the effective generation of laser light pulses with a duration of at least one millisecond. The laser pulse is formed from many subpulses. If the flow velocity of dye solution is great enough such that the new solution enters the resonant cavity before the solutions in the cavity are substantially spent, subsequent subpulses are not quenched, enabling the generation of ultra-long effective pulses with high fluences. Specifically, longer effective pulses of up to 50 msec are attainable with energies of up to 50 Joules. These energies enable reasonable spot sizes, which makes the invention relevant to cutaneous as well as deep tissue therapy, for example.
    Type: Grant
    Filed: February 10, 2000
    Date of Patent: April 15, 2003
    Assignee: Cynsure, Inc.
    Inventor: Horace W. Furumoto
  • Publication number: 20020111605
    Abstract: A long pulsed dye laser device for selective photothermolysis comprises at least two pulsed dye lasers, such as flash lamp excited dye lasers, each generating corresponding pulsed laser beams successively in time. These laser can be coordinated by a synchronizer that sequentially triggers the lasers. A combining network merges the pulse laser beams into a combined beam and a delivery system conveys the combined pulse laser beam to a patient. An example of a delivery device is a single optical fiber. This invention enables production of the necessary pulse widths, on the order of 2 msec, which can not be achieved by individual dye lasers, generally lower than 0.8 msec. Also disclosed is a selective photothermolysis method. This method comprises irradiating a tissue section of a patient with a pulsed laser beam having a changing color across a time period of the pulse.
    Type: Application
    Filed: April 12, 2002
    Publication date: August 15, 2002
    Applicant: Cynosure, Inc.
    Inventors: Horace W. Furumoto, Harry L. Ceccon
  • Patent number: 6391022
    Abstract: A long pulsed dye laser device for selective photothermolysis comprises at least two pulsed dye lasers, such as flash lamp excited dye lasers, each generating corresponding pulsed laser beams successively in time. These laser can be coordinated by a synchronizer that sequentially triggers the lasers. A combining network merges the pulse laser beams into a combined beam and a delivery system conveys the combined pulse laser beam to a patient. An example of a delivery device is a single optical fiber. This invention enables production of the necessary pulse widths, on the order of 2 msec, which can not be achieved by individual dye lasers, generally lower than 0.8 msec. Also disclosed is a selective photothermolysis method. This method comprises irradiating a tissue section of a patient with a pulsed laser beam having a changing color across a time period of the pulse.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: May 21, 2002
    Assignee: Cynosure, Inc.
    Inventors: Horace W. Furumoto, Harry L. Ceccon
  • Publication number: 20020058930
    Abstract: Near-infrared selective photothermolysis for the treatment of ectatic blood vessels, for example, blood vessels of a portwine stain birthmark. This technique is especially applicable to deeper lying blood vessels in view of the better penetration of the near infrared light. Consequently, vessels are below a dermal/epidermal boundary can be reached. Near-infrared is defined as a range of approximately 700 to 1,200 nm. The optimal colors are near 760 or between 980 to 990 nm for most populations.
    Type: Application
    Filed: January 13, 1998
    Publication date: May 16, 2002
    Inventor: HORACE W. FURUMOTO
  • Publication number: 20020049433
    Abstract: A method for treating simple wrinkles caused by age or sun exposure comprises treating blood vessels in the wrinkles with laser light. The laser light may have a wavelength between 577 and 585 nm. The laser light may also be a laser light pulse having a pulse duration that is greater than 0.2 msec, or alternatively, greater than 0.5 msec. The output pulse may be generated with a dye laser, for instance, by exciting dye solution in a resonant cavity with one or more flashlamps. A further treatment method comprises irradiating wrinkle-bearing skin with a laser pulse where the pulse duration is selectively matched to the thermal relaxation time of blood vessels in the targeted skin.
    Type: Application
    Filed: December 7, 2001
    Publication date: April 25, 2002
    Applicant: Cynosure, Inc.
    Inventors: Horace W. Furumoto, George E. S. Cho
  • Publication number: 20020016587
    Abstract: A long pulse alexandrite laser for treating dermatological specimens is disclosed. The use of alexandrite allows operation in the near-infrared, specifically in a 50 nm range surrounding 755. Infrared in this range allows good penetration while still achieving an acceptable ratio of hemoglobin to melanin absorption. In operation, the laser generates pulses having a durations between 5 and 100 msec and fluences between 10 and 50 J/cm2. A light delivery system is provided that transmits the laser light output pulse to dermatological targets of a patient. The invention is also directed to a hair removal system. Here, it is desirable to use an index-matching application on the skin sections to be treated, and a visual indicator is thermo- or photo-responsive or otherwise responsive to the laser light pulse to generate a visible change. Also, the invention is directed to a combined sclerotherapy and light treatment method and kit for unwanted veins.
    Type: Application
    Filed: August 9, 2001
    Publication date: February 7, 2002
    Applicant: Cynosure, Inc.
    Inventor: Horace W. Furumoto
  • Publication number: 20010043635
    Abstract: In a dye laser system, a porous bed filter is loaded with dye prior to operation of the system. With repeated firings, the dye solution is filtered by the porous bed filter to remove by-products of the laser process. Solute concentration is monitored and dye and additives removed by the filter are replenished by a metering pump. Precise temperature control assures consistent filtering of dye by the filter for more consistent color and energy output. To control the metering pump, the differential output of a two- channel absorption detector is digitized. The digitized signal is loaded into a counter which drives the metering pump. The useful lifetime of the dye solution is enhanced by incorporating pH buffers in the solution.
    Type: Application
    Filed: June 8, 2001
    Publication date: November 22, 2001
    Applicant: Cynosure, Inc.
    Inventors: Horace W. Furumoto, Harry L. Ceccon, George E.S. Cho, Mark P. Hacker
  • Patent number: 6273883
    Abstract: A long pulse alexandrite laser system for treating dermatological specimens is disclosed. The use of alexandrite allows operation in the near-infrared, specifically in a 50 nm range surrounding 755. Infrared in this range allows good penetration while still achieving an acceptable ratio of hemoglobin to melanin absorption. In operation, the laser generates pulses; having a durations between 5 and 100 msec and fluences between 10 and 50 J/cm2. A light delivery system is provided that transmits the laser light output pulse to dermatological targets of a patient. The system is also directed to a hair removal. Here, it is desirable to use an index-matching application on the skin sections to be treated, and a visual indicator is thermo- or photo-responsive or otherwise responsive to the laser light pulse to generate a visible change. This provides the operator with a record of those parts of the skin that have already been treated.
    Type: Grant
    Filed: April 8, 1997
    Date of Patent: August 14, 2001
    Assignee: Cynosure, Inc.
    Inventor: Horace W. Furumoto
  • Publication number: 20010009998
    Abstract: A method for treating simple wrinkles caused by age or sun exposure comprises treating blood vessels in the wrinkles with laser light. The laser light may have a wavelength between 577 and 585 nm. The laser light may also be a laser light pulse having a pulse duration that is greater than 0.2 msec, or alternatively, greater than 0.5 msec. The output pulse may be generated with a dye laser, for instance, by exciting dye solution in a resonant cavity with one or more flashlamps. A further treatment method comprises irradiating wrinkle-bearing skin with a laser pulse where the pulse duration is selectively matched to the thermal relaxation time of blood vessels in the targeted skin.
    Type: Application
    Filed: March 1, 2001
    Publication date: July 26, 2001
    Applicant: Cynosure, Inc.
    Inventors: Horace W. Furumoto, Harry L. Ceccon, Antonio G. Rizzo
  • Patent number: 6246710
    Abstract: In a dye laser system, a porous bed filter is loaded with dye prior to operation of the system. With repeated firings, the dye solution is filtered by the porous bed filter to remove by-products of the laser process. Solute concentration is monitored and dye and additives removed by the filter are replenished by a metering pump. Precise temperature control assures consistent filtering of dye by the filter for more consistent color and energy output. To control the metering pump, the differential output of a two-channel absorption detector is digitized. The digitized signal is loaded into a counter which drives the metering pump. The useful lifetime of the dye solution is enhanced by incorporating pH buffers in the solution.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: June 12, 2001
    Assignee: Cynosure, Inc.
    Inventors: Horace W. Furumoto, Harry L. Ceccon, George E. S. Cho, Mark P. Hacker
  • Patent number: 6228075
    Abstract: A long pulse alexandrite laser hair removal system is disclosed using light pulses of greater than 1 msec and fluences between 10 and 50 J/cm2. The use of an alexandrite laser allows good penetration while still achieving an acceptable combination of hemoglobin and melanin absorption. The use of an index-matching application on the skin sections to be treated is also described. This substance will be absorbed into the epidermal layer to provide better coupling of the laser light into the skin. Also, and most advantageously, it will reduce reflections at the epidermal-dermal junction, which can lead to the damage of the skin. Also a topical thermal or photochromic indicator is suggested since skin irradiation in the near-infrared generally does not produce any characteristic skin color change as is found when using pulsed dye lasers, for example.
    Type: Grant
    Filed: March 15, 1999
    Date of Patent: May 8, 2001
    Assignee: Cynosure, Inc.
    Inventor: Horace W. Furumoto
  • Patent number: 6077294
    Abstract: A method for the treatment of wrinkles on human skin, by stimulating collagen growth beneath the epidermis layer, comprising the steps of: arranging a pulsed dye laser generator in light communication with a pulsed dye laser delivery device. The pulsed dye laser delivery device is applied against tissue having wrinkles. The pulsed dye laser generator generates a pulsed dye laser light. A pulsed dye laser light from the pulsed dye laser delivery device is directed onto the tissue, to reach hemoglobin in a collagen layer up to about 1.2 mm. beneath the surface of the tissue to effect growth changes therein.
    Type: Grant
    Filed: June 11, 1998
    Date of Patent: June 20, 2000
    Assignee: Cynosure, Inc.
    Inventors: George Cho, Horace W. Furumoto
  • Patent number: RE40403
    Abstract: A method for the treatment of wrinkles on human skin, by stimulating collagen growth beneath the epidermis layer, comprising the steps of: arranging a pulsed dye laser generator in light communication with a pulsed dye laser delivery device. The pulsed dye laser delivery device is applied against tissue having wrinkles. The pulsed dye laser generator generates a pulsed dye laser light. A pulsed dye laser light from the pulsed dye laser delivery device is directed onto the tissue, to reach hemoglobin in a collagen layer up to about 1.2 mm. beneath the surface of the tissue to effect growth changes therein.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: June 24, 2008
    Assignee: Cynosure, Inc.
    Inventors: George Cho, Horace W. Furumoto, Brian D. Zelickson