Patents by Inventor Howard J. Walls

Howard J. Walls has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8884507
    Abstract: A fiber-based reflective lighting device and a lighting device. The fiber-based reflective lighting device includes a source configured to generate a primary light, a mat of reflective fibers which diffusely reflects light upon illumination with at least the primary light, and a light exit configured to emanate the reflected light. The lighting device includes a housing, a source configured to generate primary light and direct the primary light into the housing, a reflective mat of fibers disposed inside the housing at a position to reflect the primary light, and a light exit in the housing configured to emanate the reflected light from the housing.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: November 11, 2014
    Assignee: Research Triangle Institute
    Inventors: James Lynn Davis, Howard J. Walls, Karmann Mills, Vijay Gupta, Michael Kasper Lamvik
  • Patent number: 8847487
    Abstract: A device for stimulable light emission that includes a fiber mat of nanofibers having an average fiber diameter in a range between 100 and 2000 nm, and includes plural stimulable particles disposed in association with the nanofibers. The stimulable particles produce secondary light emission upon receiving primary light at a wavelength ?. The average fiber diameter is comparable in size to the wavelength ? in order to provide scattering sites within the fiber mat for the primary light. Various methods for making suitable luminescent nanofiber mats include: electrospinning a polymer solution including or not including the stimulable particles and forming from the electrospun solution nanofibers having an average fiber diameter between 100 and 2000 nm. Methods, which electrospin without the stimulable particles, introduce the stimulable particles during electrospinning or after electrospinning to the fibers and therefore to the resultant fiber mat.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: September 30, 2014
    Assignee: Research Triangle Insitute
    Inventors: James Lynn Davis, Anthony L. Andrady, David S. Ensor, Li Han, Howard J. Walls
  • Publication number: 20140287230
    Abstract: A fiber media and a filter device. The fiber media has a plurality of nanofibers formed of a polymer material, having diameters less than 1 micron, and formed into a fiber mat. A barrier layer is disposed on the nanofibers to prevent dissolution of the nanofibers in the fiber mat upon exposure of the fiber mat to a solvent of the polymer material. The barrier layer coated nanofibers have a maximum strain before breakage of at least 2%. The filter device includes the fiber media and a support attached to the fiber mat.
    Type: Application
    Filed: November 9, 2012
    Publication date: September 25, 2014
    Applicants: RESEARCH TRIANGLE INSTITUTE, NORTH CAROLINA STATE UNIVERSITY
    Inventors: Howard J. Walls, David S. Ensor, Christopher J. Oldham, Gregory N. Parsons
  • Patent number: 8652229
    Abstract: A filtration device including a filtration medium having a plurality of nanofibers of diameters less than 1 micron formed into a fiber mat in the presence of an abruptly varying electric field. The filtration device includes a support attached to the filtration medium and having openings for fluid flow therethrough. A device for making a filter material. The device includes an electrospinning element configured to electrospin a plurality of fibers from a tip of the electrospinning element, a collector opposed to the electrospinning element configured to collect electrospun fibers on a surface of the collector, and an electric field modulation device configured to abruptly vary an electric field at the collector at least once during electrospinning of the fibers. A method for making a filter material.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: February 18, 2014
    Assignee: Research Triangle Institute
    Inventors: David S. Ensor, Howard J. Walls, Anthony L. Andrady, Teri A. Walker
  • Publication number: 20130308334
    Abstract: A device for stimulable light emission that includes a fiber mat of nanofibers having an average fiber diameter in a range between 100 and 2000 nm, and includes plural stimulable particles disposed in association with the nanofibers. The stimulable particles produce secondary light emission upon receiving primary light at a wavelength ?. The average fiber diameter is comparable in size to the wavelength ? in order to provide scattering sites within the fiber mat for the primary light. Various methods for making suitable luminescent nanofiber mats include: electrospinning a polymer solution including or not including the stimulable particles and forming from the electrospun solution nanofibers having an average fiber diameter between 100 and 2000 nm. Methods, which electrospin without the stimulable particles, introduce the stimulable particles during electrospinning or after electrospinning to the fibers and therefore to the resultant fiber mat.
    Type: Application
    Filed: July 10, 2013
    Publication date: November 21, 2013
    Applicant: RESEARCH TRIANGLE INSTITUTE
    Inventors: James Lynn DAVIS, Anthony L. Andrady, David S. Ensor, Li Han, Howard J. Walls
  • Publication number: 20120281428
    Abstract: A fiber-based reflective lighting device and a lighting device. The fiber-based reflective lighting device includes a source configured to generate a primary light, a mat of reflective fibers which diffusely reflects light upon illumination with at least the primary light, and a light exit configured to emanate the reflected light. The lighting device includes a housing, a source configured to generate primary light and direct the primary light into the housing, a reflective mat of fibers disposed inside the housing at a position to reflect the primary light, and a light exit in the housing configured to emanate the reflected light from the housing.
    Type: Application
    Filed: November 17, 2010
    Publication date: November 8, 2012
    Applicant: RESEARCH TRIANGLE INSTITUTE
    Inventors: James Lynn Davis, Howard J. Walls, Karmann Mills, Vijay Gupta, Michael Kasper Lamvik
  • Publication number: 20120045752
    Abstract: A bioparticle collection device and an aerosol collection system. The bioparticle collection device includes a collection medium including a plurality of fibers formed into a fiber mat and configured to collect bioparticles thereon, and includes a viability enhancing material provider disposed in a vicinity of the plurality of fibers and configured to provide a viability enhancing material to the collected bioparticles to maintain viability of the bioparticles collected by the fiber mat. The aerosol collection system includes an aerosol pumping device configured to entrain particles in an gas stream, an aerosol saturation device configured to saturate the particles in the gas stream with a biocompatible liquid, and an aerosol collection medium downstream from the aerosol saturation device and including a plurality of fibers formed into a fiber mat for collection of the saturated aerosol particles.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 23, 2012
    Applicant: Reseach Triangle Institute
    Inventors: David S. ENSOR, Howard J. Walls, Karin K. Foarde
  • Patent number: 7999455
    Abstract: A device for stimulable light emission that includes a fiber mat of nanofibers having an average fiber diameter in a range between 100 and 2000 nm, and includes plural stimulable particles disposed in association with the nanofibers. The stimulable particles produce secondary light emission upon receiving primary light at a wavelength ?. The average fiber diameter is comparable in size to the wavelength ? in order to provide scattering sites within the fiber mat for the primary light. Various methods for making suitable luminescent nanofiber mats include: electrospinning a polymer solution including or not including the stimulable particles and forming from the electrospun solution nanofibers having an average fiber diameter between 100 and 2000 nm. Methods, which electrospin without the stimulable particles, introduce the stimulable particles during electrospinning or after electrospinning to the fibers and therefore to the resultant fiber mat.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: August 16, 2011
    Assignee: Research Triangle Institute
    Inventors: James Lynn Davis, Anthony L. Andrady, David S. Ensor, Li Han, Howard J. Walls
  • Publication number: 20110174158
    Abstract: A filtration device including a filtration medium having a plurality of nanofibers of diameters less than 1 micron formed into a fiber mat in the presence of an abruptly varying electric field during electrospinning of the plurality of nanofibers. The nanofibers retain charge in the filtration medium from the electrospinning. The filtration device includes a support attached to the filtration medium and having openings for fluid flow therethrough. A method for making a filter material. The method provides a support having openings for fluid flow therethrough, electrospins nanofibers across an entirety of the openings, abruptly varies an electric field at the collector at least once during electrospinning of the fibers, and retains charge on the nanofibers after formation of the filtration medium.
    Type: Application
    Filed: May 13, 2009
    Publication date: July 21, 2011
    Applicant: Research Triangle Institute
    Inventors: Howard J. Walls, David S. Ensor, Anthony L. Andrady, Teri A. Walker
  • Patent number: 7789930
    Abstract: A filtration device including a filtration medium having a plurality of nanofibers of diameters less than 1 micron formed into a fiber mat in the presence of an abruptly varying electric field. The filtration device includes a support attached to the filtration medium and having openings for fluid flow therethrough. A device for making a filter material. The device includes an electrospinning element configured to electrospin a plurality of fibers from a tip of the electrospinning element, a collector opposed to the electrospinning element configured to collect electrospun fibers on a surface of the collector, and an electric field modulation device configured to abruptly vary an electric field at the collector at least once during electrospinning of the fibers. A method for making a filter material.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: September 7, 2010
    Assignee: Research Triangle Institute
    Inventors: David S. Ensor, Howard J. Walls, Anthony L. Andrady, Teri A. Walker
  • Publication number: 20100209602
    Abstract: A device for stimulable light emission that includes a fiber mat of nanofibers having an average fiber diameter in a range between 100 and 2000 nm, and includes plural stimulable particles disposed in association with the nanofibers. The stimulable particles produce secondary light emission upon receiving primary light at a wavelength ?. The average fiber diameter is comparable in size to the wavelength ? in order to provide scattering sites within the fiber mat for the primary light. Various methods for making suitable luminescent nanofiber mats include: electrospinning a polymer solution including or not including the stimulable particles and forming from the electrospun solution nanofibers having an average fiber diameter between 100 and 2000 nm. Methods, which electrospin without the stimulable particles, introduce the stimulable particles during electrospinning or after electrospinning to the fibers and therefore to the resultant fiber mat.
    Type: Application
    Filed: April 29, 2010
    Publication date: August 19, 2010
    Applicant: Research Triangle Institute
    Inventors: James Lynn Davis, Anthony L. Adrady, David S. Ensor, Li Han, Howard J. Walls
  • Publication number: 20100177518
    Abstract: An optical device having a mat including plural nanofibers configured to transmit light having wavelengths above a cutoff wavelength and to reject light at wavelengths below the cutoff wavelength. The nanofibers have an average fiber diameter comparable in size to the cutoff wavelength.
    Type: Application
    Filed: June 12, 2008
    Publication date: July 15, 2010
    Applicant: RESEARCH TRIANGLE INSTITUTE
    Inventors: Howard J. Walls, James Lynn Davis, David S. Ensor
  • Publication number: 20100031617
    Abstract: A filtration device including a filtration medium having a plurality of nanofibers of diameters less than 1 micron formed into a fiber mat in the presence of an abruptly varying electric field. The filtration device includes a support attached to the filtration medium and having openings for fluid flow therethrough. A device for making a filter material. The device includes an electrospinning element configured to electrospin a plurality of fibers from a tip of the electrospinning element, a collector opposed to the electrospinning element configured to collect electrospun fibers on a surface of the collector, and an electric field modulation device configured to abruptly vary an electric field at the collector at least once during electrospinning of the fibers. A method for making a filter material.
    Type: Application
    Filed: October 8, 2009
    Publication date: February 11, 2010
    Applicant: Research Triangle Insitute
    Inventors: DAVID S. ENSOR, Howard J. Walls, Anthony L. Andrady, Teri A. Walker
  • Publication number: 20080110342
    Abstract: A filtration device including a filtration medium having a plurality of nanofibers of diameters less than 1 micron formed into a fiber mat in the presence of an abruptly varying electric field. The filtration device includes a support attached to the filtration medium and having openings for fluid flow therethrough. A device for making a filter material. The device includes an electrospinning element configured to electrospin a plurality of fibers from a tip of the electrospinning element, a collector opposed to the electrospinning element configured to collect electrospun fibers on a surface of the collector, and an electric field modulation device configured to abruptly vary an electric field at the collector at least once during electrospinning of the fibers. A method for making a filter material.
    Type: Application
    Filed: November 13, 2006
    Publication date: May 15, 2008
    Applicant: Research Triangle Institute
    Inventors: David S. Ensor, Howard J. Walls, Anthony L. Andrady, Teri A. Walker
  • Publication number: 20080113214
    Abstract: A device for stimulable light emission that includes a fiber mat of nanofibers having an average fiber diameter in a range between 100 and 2000 nm, and includes plural stimulable particles disposed in association with the nanofibers. The stimulable particles produce secondary light emission upon receiving primary light at a wavelength ?. The average fiber diameter is comparable in size to the wavelength ? in order to provide scattering sites within the fiber mat for the primary light. Various methods for making suitable luminescent nanofiber mats include: electrospinning a polymer solution including or not including the stimulable particles and forming from the electrospun solution nanofibers having an average fiber diameter between 100 and 2000 nm. Methods, which electrospin without the stimulable particles, introduce the stimulable particles during electrospinning or after electrospinning to the fibers and therefore to the resultant fiber mat.
    Type: Application
    Filed: November 13, 2006
    Publication date: May 15, 2008
    Applicant: Research Triangle Institute
    Inventors: James Lynn Davis, Anthony L. Adrady, David S. Ensor, Li Han, Howard J. Walls