Patents by Inventor Howard M. Choset

Howard M. Choset has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190274521
    Abstract: A highly articulated robotic probe (HARP) is comprised of a first mechanism and a second mechanism, one or both of which can be steered in desired directions. Each mechanism can alternate between being rigid and limp. In limp mode the mechanism is highly flexible. When one mechanism is limp, the other is rigid. The limp mechanism is then pushed or pulled along the rigid mechanism. The limp mechanism is made rigid, thereby assuming the shape of the rigid mechanism. The rigid mechanism is made limp and the process repeats. These innovations allow the device to drive anywhere in three dimensions. The device can “remember” its previous configurations, and can go anywhere in a body or other structure (e.g. jet engines). When used in medical applications, once the device arrives at a desired location, the inner core mechanism can be removed and another functional device such as a scalpel, clamp or other tool slid through the rigid sleeve to perform.
    Type: Application
    Filed: August 28, 2018
    Publication date: September 12, 2019
    Inventors: Howard M. Choset, Alon Wolf, Marco A. Zenati
  • Patent number: 10149607
    Abstract: A highly articulated robotic probe (HARP) is comprised of a first mechanism and a second mechanism, one or both of which can be steered in desired directions. Each mechanism can alternate between being rigid and limp. In limp mode the mechanism is highly flexible. When one mechanism is limp, the other is rigid. The limp mechanism is then pushed or pulled along the rigid mechanism. The limp mechanism is made rigid, thereby assuming the shape of the rigid mechanism. The rigid mechanism is made limp and the process repeats. These innovations allow the device to drive anywhere in three dimensions. The device can “remember” its previous configurations, and can go anywhere in a body or other structure (e.g. jet engine). When used in medical applications, once the device arrives at a desired location, the inner core mechanism can be removed and another functional device such as a scalpel, clamp or other tool slid through the rigid sleeve to perform.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: December 11, 2018
    Assignees: Carnegie Mellon University, University of Pittsburgh-of the Commonwealth System of Higher Education
    Inventors: Howard M. Choset, Alon Wolf, Marco A. Zenati
  • Patent number: 10076235
    Abstract: A highly articulated robotic probe (HARP) is comprised of a first mechanism and a second mechanism, one or both of which can be steered in desired directions. Each mechanism can alternate between being rigid and limp. In limp mode the mechanism is highly flexible. When one mechanism is limp, the other is rigid. The limp mechanism is then pushed or pulled along the rigid mechanism. The limp mechanism is made rigid, thereby assuming the shape of the rigid mechanism. The rigid mechanism is made limp and the process repeats. These innovations allow the device to drive anywhere in three dimensions. The device can “remember” its previous configurations, and can go anywhere in a body or other structure (e.g. jet engine). When used in medical applications, once the device arrives at a desired location, the inner core mechanism can be removed and another functional device such as a scalpel, clamp or other tool slid through the rigid sleeve to perform.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: September 18, 2018
    Assignees: Carnegie Mellon University, University of Pittsburgh—of the Commonwealth System of Higher Education
    Inventors: Howard M. Choset, Alon Wolf, Marco A. Zenati
  • Publication number: 20170156569
    Abstract: A highly articulated robotic probe (HARP) is comprised of a first mechanism and a second mechanism, one or both of which can be steered in desired directions. Each mechanism can alternate between being rigid and limp. In limp mode the mechanism is highly flexible. When one mechanism is limp, the other is rigid. The limp mechanism is then pushed or pulled along the rigid mechanism. The limp mechanism is made rigid, thereby assuming the shape of the rigid mechanism. The rigid mechanism is made limp and the process repeats. These innovations allow the device to drive anywhere in three dimensions. The device can “remember” its previous configurations, and can go anywhere in a body or other structure (e.g. jet engine). When used in medical applications, once the device arrives at a desired location, the inner core mechanism can be removed and another functional device such as a scalpel, clamp or other tool slid through the rigid sleeve to perform.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 8, 2017
    Inventors: Howard M. Choset, Alon Wolf, Marco A. Zenati
  • Patent number: 9591964
    Abstract: A system that includes a highly articulated robotic probe having a first mechanism comprising a plurality of first links, and a second mechanism comprising a plurality of second links. The second mechanism is configured to surround at least a portion of the first mechanism. The system includes a feeder mechanism configured to advance and retract the highly articulated robotic probe, and a computing device in communication with the feeder mechanism. The computing device is configured to receive two-axis data from an input device, translate the two-axis position data into three-axis coordinate system data, and adjust a position of one or more second mechanism motors based on the three-axis coordinate system data.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: March 14, 2017
    Assignees: Carnegie Mellon University, University of Pittsburgh—Of the Commonwealth of Higher Education
    Inventors: Howard M. Choset, Alon Wolf, Marco A. Zenati
  • Publication number: 20160174816
    Abstract: A highly articulated robotic probe (HARP) is comprised of a first mechanism and a second mechanism, one or both of which can be steered in desired directions. Each mechanism can alternate between being rigid and limp. In limp mode the mechanism is highly flexible. When one mechanism is limp, the other is rigid. The limp mechanism is then pushed or pulled along the rigid mechanism. The limp mechanism is made rigid, thereby assuming the shape of the rigid mechanism. The rigid mechanism is made limp and the process repeats. These innovations allow the device to drive anywhere in three dimensions. The device can “remember” its previous configurations, and can go anywhere in a body or other structure (e.g. jet engine). When used in medical applications, once the device arrives at a desired location, the inner core mechanism can be removed and another functional device such as a scalpel, clamp or other tool slid through the rigid sleeve to perform.
    Type: Application
    Filed: March 9, 2015
    Publication date: June 23, 2016
    Inventors: Howard M. Choset, Alon Wolf, Marco A. Zenati
  • Publication number: 20150164491
    Abstract: A highly articulated robotic probe (HARP) is comprised of a first mechanism and a second mechanism, one or both of which can be steered in desired directions. Each mechanism can alternate between being rigid and limp. In limp mode the mechanism is highly flexible. When one mechanism is limp, the other is rigid. The limp mechanism is then pushed or pulled along the rigid mechanism. The limp mechanism is made rigid, thereby assuming the shape of the rigid mechanism. The rigid mechanism is made limp and the process repeats. These innovations allow the device to drive anywhere in three dimensions. The device can “remember” its previous configurations, and can go anywhere in a body or other structure (e.g. jet engine). When used in medical applications, once the device arrives at a desired location, the inner core mechanism can be removed and another functional device such as a scalpel, clamp or other tool slid through the rigid sleeve to perform.
    Type: Application
    Filed: December 29, 2014
    Publication date: June 18, 2015
    Inventors: Howard M. CHOSET, Alon Wolf, Marco A. Zenati
  • Patent number: 9011318
    Abstract: A highly articulated robotic probe (HARP) is comprised of a first mechanism and a second mechanism, one or both of which can be steered in desired directions. Each mechanism can alternate between being rigid and limp. In limp mode the mechanism is highly flexible. When one mechanism is limp, the other is rigid. The limp mechanism is then pushed or pulled along the rigid mechanism. The limp mechanism is made rigid, thereby assuming the shape of the rigid mechanism. The rigid mechanism is made limp and the process repeats. These innovations allow the device to drive anywhere in three dimensions. The device can “remember” its previous configurations, and can go anywhere in a body or other structure (e.g. jet engine). When used in medical applications, once the device arrives at a desired location, the inner core mechanism can be removed and another functional device such as a scalpel, clamp or other tool slid through the rigid sleeve to perform.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: April 21, 2015
    Assignee: Carnegie Mellon University and University of Pittsburg—Of the Commonwealth System of Higher Education
    Inventors: Howard M. Choset, Alon Wolf, Marco A. Zenati
  • Patent number: 8656697
    Abstract: A steerable multi-linked device. The device includes a first multi-linked mechanism and a second multi-linked mechanism. At least one of the first and second multi-linked mechanisms is steerable and includes a modular link assembly at an end thereof. The modular link assembly includes a base, and a tip removably connected to the base.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: February 25, 2014
    Assignee: Carnegie Mellon University
    Inventors: Brett Zubiate, Howard M. Choset, Amir Degani, Michael Schwerin
  • Publication number: 20130247537
    Abstract: A steerable multi-linked device. The device includes a first multi-linked mechanism and a second multi-linked mechanism. At least one of the first and second multi-linked mechanisms is steerable and includes a modular link assembly at an end thereof. The modular link assembly includes a base, and a tip removably connected to the base.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 26, 2013
    Inventors: Brett Zubiate, Howard M. Choset, Amir Degani, Michael Schwerin
  • Publication number: 20120180591
    Abstract: A steerable multi-linked device. The device includes a first multi-linked mechanism and a second multi-linked mechanism. At least one of the first and second multi-linked mechanisms is steerable and includes a modular link assembly at an end thereof. The modular link assembly includes a base, and a tip removably connected to the base.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 19, 2012
    Applicant: Carnegie Mellon University
    Inventors: Brett Zubiate, Howard M. Choset, Amir Degani, Michael Schwerin
  • Publication number: 20110056320
    Abstract: A steerable multi-linked device. The device includes a first multi-linked mechanism and a second multi-linked mechanism. At least one of the first and second multi-linked mechanisms is steerable and includes a modular link assembly at an end thereof. The modular link assembly includes a base, and a tip removably connected to the base.
    Type: Application
    Filed: November 10, 2010
    Publication date: March 10, 2011
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Brett Zubiate, Howard M. Choset, Amir Degani, Michael Schwerin
  • Patent number: 7854109
    Abstract: A steerable multi-linked device. The device includes a first multi-linked mechanism and a second multi-linked mechanism. At least one of the first and second multi-linked mechanisms is steerable and includes a modular link assembly at an end thereof. The modular link assembly includes a base, and a tip removably connected to the base.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: December 21, 2010
    Assignee: Carnegie Mellon University
    Inventors: Brett Zubiate, Howard M. Choset, Amir Degani, Michael Schwerin
  • Publication number: 20100294071
    Abstract: A steerable multi-linked device. The device includes a first multi-linked mechanism and a second multi-linked mechanism. At least one of the first and second multi-linked mechanisms is steerable and includes a modular link assembly at an end thereof. The modular link assembly includes a base, and a tip removably connected to the base.
    Type: Application
    Filed: August 5, 2010
    Publication date: November 25, 2010
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Brett Zubiate, Howard M. Choset, Amir Degani, Michael Schwerin
  • Publication number: 20090171151
    Abstract: A highly articulated robotic probe (HARP) is comprised of a first mechanism and a second mechanism, one or both of which can be steered in desired directions. Each mechanism can alternate between being rigid and limp. In limp mode the mechanism is highly flexible. When one mechanism is limp, the other is rigid. The limp mechanism is then pushed or pulled along the rigid mechanism. The limp mechanism is made rigid, thereby assuming the shape of the rigid mechanism. The rigid mechanism is made limp and the process repeats. These innovations allow the device to drive anywhere in three dimensions. The device can “remember” its previous configurations, and can go anywhere in a body or other structure (e.g. jet engine). When used in medical applications, once the device arrives at a desired location, the inner core mechanism can be removed and another functional device such as a scalpel, clamp or other tool slid through the rigid sleeve to perform.
    Type: Application
    Filed: June 24, 2005
    Publication date: July 2, 2009
    Inventors: Howard M. Choset, Alon Wolf, Marco A. Zenati
  • Publication number: 20080163603
    Abstract: A steerable multi-linked device. The device includes a first multi-linked mechanism and a second multi-linked mechanism. At least one of the first and second multi-linked mechanisms is steerable and includes a modular link assembly at an end thereof. The modular link assembly includes a base, and a tip removably connected to the base.
    Type: Application
    Filed: October 24, 2007
    Publication date: July 10, 2008
    Applicant: INNOVENTION TECHNOLOGIES, LLC.
    Inventors: Brett Zubiate, Howard M. Choset, Amir Degani, Michael Schwerin