Patents by Inventor Howard T. White

Howard T. White has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9472989
    Abstract: A method of manufacturing an armature for an electric motor, includes: placing a commutator and a lamination stack on an armature shaft, winding magnet wire in slots in the lamination stacks to form coils, attaching ends of the magnet wire to the commutator, and molding plastic around the magnet wire and around the shaft of the armature at ends of the lamination stack. A spinning inertia of the armature is adjusted by adjusting at least one of a mass of the plastic molded and a distribution of the plastic molded. Alternatively and/or additionally, at least one of a resonant frequency and critical speed of the armature is adjusted by adjusting at least one of a geometry of the plastic molded, the physical properties of the plastic and the mechanical properties of the plastic.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: October 18, 2016
    Assignee: Black & Decker Inc.
    Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
  • Patent number: 8997332
    Abstract: A method for forming an armature for an electric motor includes: securing a lamination stack having slots therein on an armature shaft, securing a commutator on one end of the armature shaft, winding magnet wires in the slots in the lamination stack and securing ends of the magnet wires to the commutator, the magnet wires having armature lead wires that extend from the slots to the commutator; and molding plastic over the magnet wires to encase at least the armature lead wires in plastic. Alternatively and/or additionally, plastic is molded over the magnet wires to retain them in the slots and to support the armature lead wires and prevent them from vibrating when the armature rotates during operation.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: April 7, 2015
    Assignee: Black & Decker Inc.
    Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
  • Patent number: 8937412
    Abstract: An electric motor for a power tool includes a stator and an armature disposed in the stator. The armature includes a lamination stack having slots therein; an armature shaft extending coaxially through the lamination stack; a plurality of magnet wires wound in the slots of the lamination stack; a commutator disposed on the armature shaft to which ends of the magnet wires are electrically coupled; and thermally conductive plastic at least partially encasing the magnet wires, the thermally conductive plastic having a base polymer that is a blend of at least two polymers.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: January 20, 2015
    Assignee: Black & Decker Inc.
    Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
  • Publication number: 20140360008
    Abstract: A method of manufacturing an armature for an electric motor, includes: placing a commutator and a lamination stack on an armature shaft, winding magnet wire in slots in the lamination stacks to form coils, attaching ends of the magnet wire to the commutator, and molding plastic around the magnet wire and around the shaft of the armature at ends of the lamination stack. A spinning inertia of the armature is adjusted by adjusting at least one of a mass of the plastic molded and a distribution of the plastic molded. Alternatively and/or additionally, at least one of a resonant frequency and critical speed of the armature is adjusted by adjusting at least one of a geometry of the plastic molded, the physical properties of the plastic and the mechanical properties of the plastic.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 11, 2014
    Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
  • Patent number: 8901787
    Abstract: An electric motor has a stator in which an armature is disposed. The armature has a shaft. One of the stator or the armature includes a lamination stack having slots in which magnet wires are wound, the magnet wires having a coating of heat activated adhesive. There is further provided plastic molded around the magnet wires with heat of the plastic activating the heat activated adhesive on the magnet wires during molding of the plastic to bond the magnet wires together.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: December 2, 2014
    Assignee: Black & Decker Inc.
    Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
  • Patent number: 8850690
    Abstract: A method of manufacturing an armature for an electric motor, includes: placing a commutator and a lamination stack on an armature shaft, winding magnet wire in slots in the lamination stacks to form coils, attaching ends of the magnet wire to the commutator, and molding plastic around the magnet wire and around the shaft of the armature at ends of the lamination stack. A spinning inertia of the armature is adjusted by adjusting at least one of a mass of the plastic molded and a distribution of the plastic molded. Alternatively and/or additionally, at least one of a resonant frequency and critical speed of the armature is adjusted by adjusting at least one of a geometry of the plastic molded, the physical properties of the plastic and the mechanical properties of the plastic.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: October 7, 2014
    Assignee: Black & Decker Inc.
    Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
  • Publication number: 20130300221
    Abstract: An electric motor has a stator in which an armature is disposed. The armature has a shaft. One of the stator or the armature includes a lamination stack having slots in which magnet wires are wound, the magnet wires having a coating of heat activated adhesive. There is further provided plastic molded around the magnet wires with heat of the plastic activating the heat activated adhesive on the magnet wires during molding of the plastic to bond the magnet wires together.
    Type: Application
    Filed: November 1, 2012
    Publication date: November 14, 2013
    Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
  • Publication number: 20130291371
    Abstract: A method of manufacturing an armature for an electric motor, includes: placing a commutator and a lamination stack on an armature shaft, winding magnet wire in slots in the lamination stacks to form coils, attaching ends of the magnet wire to the commutator, and molding plastic around the magnet wire and around the shaft of the armature at ends of the lamination stack. A spinning inertia of the armature is adjusted by adjusting at least one of a mass of the plastic molded and a distribution of the plastic molded. Alternatively and/or additionally, at least one of a resonant frequency and critical speed of the armature is adjusted by adjusting at least one of a geometry of the plastic molded, the physical properties of the plastic and the mechanical properties of the plastic.
    Type: Application
    Filed: November 1, 2012
    Publication date: November 7, 2013
    Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
  • Patent number: 8011549
    Abstract: A driving tool with a flywheel, a driver, an actuator and a roller that is moveable between an unactuated position and an actuated position. Positioning of the roller in the actuated position forces an engagement surface on the driver into contact with a rotating edge of the flywheel to transfer energy from the flywheel to the driver so that the driver will translate along an axis. The actuator at least partially initiates movement of the roller from the unactuated position to the actuated position.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: September 6, 2011
    Assignee: Black & Decker Inc.
    Inventors: Alan Berry, William D. Sauerwein, Craig A. Schell, Jeffrey A. Elligson, Charles L. Bradenbaugh, IV, Howard T. White, James J. Kenney
  • Patent number: 7096566
    Abstract: Magnet wires wound in slots in a lamination stack of a dynamoelectric machine are encapsulated, in whole or in part, with plastic. The plastic may be thermally conductive and have features molded therein that enhance heat transfer. The plastic may stiffen the armature and increase its critical speed. Characteristics of the plastic, its geometry and its distribution may be varied to adjust spinning inertia and resonant frequency of the armature. The magnet wires may be compressed into the slots, by application of iso-static pressure or by the pressure of the plastic being molded around them. Larger magnet wire can then be used which increases the power of the electric motor using the armature having the larger magnet wire. A two or three plate mold may be used to mold the plastic around the armature. Balancing features can be molded in place. The plastic can have a base polymer that is a blend of two or more polymers and various thermally conductive fillings.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: August 29, 2006
    Assignee: Black & Decker Inc.
    Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White
  • Publication number: 20040056538
    Abstract: Magnet wires wound in slots in a lamination stack of a dynamoelectric machine are encapsulated, in whole or in part, with plastic. The plastic may be thermally conductive and have features molded therein that enhance heat transfer. The plastic may stiffen the armature and increase its critical speed. Characteristics of the plastic, its geometry and its distribution may be varied to adjust spinning inertia and resonant frequency of the armature. The magnet wires may be compressed into the slots, by application of iso-static pressure or by the pressure of the plastic being molded around them. Larger magnet wire can then be used which increases the power of the electric motor using the armature having the larger magnet wire. A two or three plate mold may be used to mold the plastic around the armature. Balancing features can be molded in place. The plastic can have a base polymer that is a blend of two or more polymers and various thermally conductive fillings.
    Type: Application
    Filed: July 10, 2003
    Publication date: March 25, 2004
    Inventors: Hung T. Du, Brandon L. Verbrugge, Joshua F. West, Michael R. Sell, Richard T. Walter, David J. Smith, Earl M. Ortt, John C. Stone, Howard T. White