Patents by Inventor Hsiang-Ku Shen

Hsiang-Ku Shen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220310538
    Abstract: In a method of manufacturing a semiconductor device, an opening is formed in a first dielectric layer so that a part of a lower conductive layer is exposed at a bottom of the opening, one or more liner conductive layers are formed over the part of the lower conductive layer, an inner sidewall of the opening and an upper surface of the first dielectric layer, a main conductive layer is formed over the one or more liner conductive layers, a patterned conductive layer is formed by patterning the main conductive layer and the one or more liner conductive layers, and a cover conductive layer is formed over the patterned conductive layer. The main conductive layer which is patterned is wrapped around by the cover conductive layer and one of the one or more liner conductive layers.
    Type: Application
    Filed: July 6, 2021
    Publication date: September 29, 2022
    Inventors: Tsung-Chieh HSIAO, Hsiang-Ku SHEN, Yuan-Yang HSIAO, Ying-Yao LAI, Dian-Hau CHEN
  • Patent number: 11444173
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The method includes forming a fin structure over a substrate. The method also includes forming a gate structure over the fin structure. The method further includes forming fin spacers over sidewalls of the fin structure and gate spacers over sidewalls of the gate structure. In addition, the method includes forming a source/drain structure over the fin structure and depositing a dummy material layer to cover the source/drain structure. The dummy material layer is removed faster than the gate spacers during the removal of the dummy material layer. The method further includes forming a salicide layer over the source/drain structure and the fin spacers, and forming a contact over the salicide layer. The dummy material layer includes Ge, amorphous silicon or spin-on carbon.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: September 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsiang-Ku Shen, Jin-Mu Yin, Tsung-Chieh Hsiao, Chia-Lin Chuang, Li-Zhen Yu, Dian-Hau Chen, Shih-Wei Wang, De-Wei Yu, Chien-Hao Chen, Bo-Cyuan Lu, Jr-Hung Li, Chi-On Chui, Min-Hsiu Hung, Hung-Yi Huang, Chun-Cheng Chou, Ying-Liang Chuang, Yen-Chun Huang, Chih-Tang Peng, Cheng-Po Chau, Yen-Ming Chen
  • Patent number: 11443984
    Abstract: A semiconductor device includes a first gate structure disposed on a substrate and extending in a first direction. The first gate structure includes a first gate electrode, a first cap insulating layer disposed over the first gate electrode, first sidewall spacers disposed on opposing side faces of the first gate electrode and the first cap insulating layer and second sidewall spacers disposed over the first sidewall spacers. The semiconductor device further includes a first protective layer formed over the first cap insulating layer, the first sidewall spacers and the second sidewall spacers. The first protective layer has a n-shape having a head portion and two leg portions in a cross section along a second direction perpendicular to the first direction.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: September 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hui-Chi Chen, Hsiang-Ku Shen, Jeng-Ya Yeh
  • Publication number: 20220285436
    Abstract: A semiconductor device includes a semiconductor substrate, a gate structure, a source region, a drain region, an interconnect structure, a memory cell and a conductive via. The semiconductor substrate has a first side and a second side opposite to the first side. The gate structure is disposed over the first side of the semiconductor substrate. The source region and the drain region are disposed in the semiconductor substrate aside the gate structure. The interconnect structure is disposed over the first side of the semiconductor substrate and electrically connected to the source region. The memory cell is disposed over the second side of the semiconductor substrate and electrically connected to the drain region. The conductive via is disposed in the semiconductor substrate between the drain region and the memory cell and electrically connects the drain region and the memory cell.
    Type: Application
    Filed: June 30, 2021
    Publication date: September 8, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiang-Ku Shen, Liang-Wei Wang, Dian-Hau Chen, Yen-Ming Chen
  • Publication number: 20220285434
    Abstract: A semiconductor package includes a first semiconductor device and a second semiconductor device. The first semiconductor device includes a first semiconductor substrate, a first bonding structure and a memory cell. The second semiconductor device is stacked over the first semiconductor device. The second semiconductor device includes a second semiconductor substrate, a second bonding structure in a second dielectric layer and a peripheral circuit between the second semiconductor substrate and the second bonding structure. The first bonding structure and the second bonding structure are bonded and disposed between the memory cell and the peripheral circuit, and the memory cell and the peripheral circuit are electrically connected through the first bonding structure and the second bonding structure.
    Type: Application
    Filed: June 29, 2021
    Publication date: September 8, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsiang-Ku Shen, Ku-Feng Lin, Liang-Wei Wang, Dian-Hau Chen
  • Publication number: 20220285264
    Abstract: A metal-insulator-metal (MIM) structure and methods of forming the same for reducing the accumulation of external stress at the corners of the conductor layers are disclosed herein. An exemplary device includes a substrate that includes an active semiconductor device. A stack of dielectric layers is disposed over the substrate. A lower contact is disposed over the stack of dielectric layers. A passivation layer is disposed over the lower contact. A MIM structure is disposed over the passivation layer, the MIM structure including a first conductor layer, a second conductor layer disposed over the first conductor layer, and a third conductor layer disposed over the second conductor layer. A first insulator layer is disposed between the first conductor layer and the second conductor layer. A second insulator layer is disposed between the second conductor layer and the third conductor layer. One or more corners of the third conductor layer are rounded.
    Type: Application
    Filed: September 9, 2021
    Publication date: September 8, 2022
    Inventors: Yuan-Yang Hsiao, Hsiang-Ku Shen, Dian-Hau Chen, Hsiao Ching-Wen, Yao-Chun Chuang
  • Publication number: 20220285479
    Abstract: The present disclosure is directed to a semiconductor device. The semiconductor device includes a substrate, an insulating layer disposed on the substrate, a first conductive feature disposed in the insulating layer, and a capacitor structure disposed on the insulating layer. The capacitor structure includes a first electrode, a first dielectric layer, a second electrode, a second dielectric layer, and a third electrode sequentially stacked. The semiconductor device also includes a first via connected to the first electrode and the third electrode, a second via connected to the second electrode, and a third via connected to the first conductive feature. A part of the first via is disposed in the insulating layer. A portion of the first conductive feature is directly under the capacitor structure.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Inventors: Chih-Fan Huang, Hung-Chao Kao, Yuan-Yang Hsiao, Tsung-Chieh Hsiao, Hsiang-Ku Shen, Hui-Chi Chen, Dian-Hau Chen, Yen-Ming Chen
  • Publication number: 20220285263
    Abstract: A method of forming a semiconductor arrangement includes forming a first capacitor in a first voltage domain and forming a second capacitor in the first voltage domain. The first capacitor is connected in parallel with the second capacitor. A third capacitor and a fourth capacitor are formed in a second voltage domain. The third capacitor is connected in series with the fourth capacitor. The first capacitor and the second capacitor are connected in parallel with a supply terminal of the first voltage domain and a reference terminal of the first voltage domain. The fourth capacitor is connected to a supply terminal of the second voltage domain. The third capacitor is connected to a reference terminal of the second voltage domain.
    Type: Application
    Filed: June 1, 2021
    Publication date: September 8, 2022
    Inventors: Wan-Yu Lo, Chung-Hsing Wang, Chin-Shen Lin, Kuo-Nan Yang, Hsiang-Ku Shen, Dian-Hau Chen
  • Patent number: 11424319
    Abstract: Semiconductor devices and methods of forming the same are provided. In one embodiment, a semiconductor device includes a contact feature in a first dielectric layer, a first passivation layer over the contact feature, a bottom conductor plate layer disposed over the first passivation layer and including a first plurality of sublayers, a second dielectric layer over the bottom conductor plate layer, a middle conductor plate layer disposed over the second dielectric layer and including a second plurality of sublayers, a third dielectric layer over the middle conductor plate layer, a top conductor plate layer disposed over the third dielectric layer and including a third plurality of sublayers, and a second passivation layer over the top conductor plate layer.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: August 23, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsiang-Ku Shen, Dian-Hau Chen
  • Publication number: 20220165936
    Abstract: Methods and devices are provided that include a magnetic tunneling junction (MTJ) element. A first spacer layer abuts sidewalls of the MTJ element. The first spacer layer has a low-dielectric constant (low-k) oxide composition. A second spacer layer is disposed on the first spacer layer and has a low-k nitride composition.
    Type: Application
    Filed: November 25, 2020
    Publication date: May 26, 2022
    Inventors: Hsiang-Ku SHEN, Dian-Hau CHEN
  • Publication number: 20220165940
    Abstract: A method includes providing a structure having a memory region and a logic region; a first metal layer and a dielectric barrier layer over the first metal layer in both the memory region and the logic region; a first dielectric layer over the dielectric barrier layer; multiple magnetic tunneling junction (MTJ) devices over the first metal layer, the dielectric barrier layer, and the first dielectric layer; and a second dielectric layer over the first dielectric layer and the MTJ devices. The first dielectric layer, the MTJ devices, and the second dielectric layer are in the memory device region and not in the logic device region. The method further includes depositing an extreme low-k (ELK) dielectric layer using FCVD over the memory region and the logic region; and buffing the ELK dielectric layer to planarize a top surface of the ELK dielectric layer.
    Type: Application
    Filed: November 25, 2020
    Publication date: May 26, 2022
    Inventors: Hsiang-Ku Shen, Dian-Hau Chen
  • Patent number: 11342408
    Abstract: The present disclosure is directed to a method of fabrication a semiconductor structure. The method includes providing a substrate and forming a bottom electrode over the substrate, wherein a terminal end of the bottom electrode has a tapered sidewall. The method also includes depositing an insulating layer over the bottom electrode and forming a top electrode over the insulating layer, wherein a terminal end of the top electrode has a vertical sidewall.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: May 24, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Fan Huang, Hung-Chao Kao, Yuan-Yang Hsiao, Tsung-Chieh Hsiao, Hsiang-Ku Shen, Hui-Chi Chen, Dian-Hau Chen, Yen-Ming Chen
  • Publication number: 20220069199
    Abstract: Semiconductor device and methods of forming the same are provided. A semiconductor device according to one embodiment includes a dielectric layer including a top surface, a plurality of magneto-resistive memory cells disposed in the dielectric layer and including top electrodes, a first etch stop layer disposed over the dielectric layer, a common electrode extending through the first etch stop layer to be in direct contact with the top electrodes, and a second etch stop layer disposed on the first etch stop layer and the common electrode.
    Type: Application
    Filed: August 25, 2020
    Publication date: March 3, 2022
    Inventors: Chih-Fan Huang, Hsiang-Ku Shen, Liang-Wei Wang, Chen-Chiu Huang, Dian-Hau Chen, Yen-Ming Chen
  • Publication number: 20220059759
    Abstract: A method for manufacturing a memory device includes forming a via trench in a substrate and forming a via in the via trench. A lower portion of the via includes a first metal and an upper portion of the via includes a second metal that is different from the first metal. The method further includes forming a magnetic tunneling junction over the via and forming a top electrode over the magnetic tunneling junction.
    Type: Application
    Filed: August 20, 2020
    Publication date: February 24, 2022
    Inventors: Hsiang-Ku Shen, Liang-Wei Wang, Dian-Hau Chen
  • Publication number: 20220044717
    Abstract: A semiconductor structure includes a third metal layer immediately above a second metal layer that is over a first metal layer. The second metal layer includes magnetic tunneling junction (MTJ) devices in a memory region and a first conductive feature in a logic region. Each MTJ device includes a bottom electrode and an MTJ stack over the bottom electrode. The third metal layer includes a first via electrically connecting to the first conductive feature, and a slot via over and electrically connecting to the MTJ stack of the MTJ devices. The slot via occupies space extending continuously and laterally from a first one to a last one of the MTJ devices. The first via is as thin as or thinner than the slot via. The third metal layer further includes second and third conductive features electrically connecting to the first via and the slot via, respectively.
    Type: Application
    Filed: May 17, 2021
    Publication date: February 10, 2022
    Inventors: Chih-Fan Huang, Hsiang-Ku Shen, Liang-Wei Wang, Dian-Hau Chen, Yen-Ming Chen
  • Patent number: 11239142
    Abstract: A package structure and method for forming the same are provided. The package structure includes a conductive layer formed over a first substrate, and a dielectric layer formed over the conductive layer. The package structure includes a metal-insulator-metal (MIM) capacitor embedded in the dielectric layer, and a shielding layer formed over the MIM capacitor. The shielding layer is insulated from the MIM capacitor by the dielectric layer. The package structure also includes a first through via formed through the MIM capacitor, and the first through via is connected to the conductive layer, and the first through via is insulated from the shielding layer.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: February 1, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chih-Fan Huang, Hsiang-Ku Shen, Hui-Chi Chen, Tien-I Bao, Dian-Hau Chen, Yen-Ming Chen
  • Patent number: 11222946
    Abstract: Methods of forming a 3-dimensional metal-insulator-metal super high density (3D-MIM-SHD) capacitor and semiconductor device are disclosed herein. A method includes depositing a base layer of a first dielectric material over a semiconductor substrate and etching a series of recesses in the base layer. Once the series of recesses have been etched into the base layer, a series of conductive layers and dielectric layers may be deposited within the series of recesses to form a three dimensional corrugated stack of conductive layers separated by the dielectric layers. A first contact plug may be formed through a middle conductive layer of the corrugated stack and a second contact plug may be formed through a top conductive layer and a bottom conductive layer of the corrugated stack. The contact plugs electrically couple the conductive layers to one or more active devices of the semiconductor substrate.
    Type: Grant
    Filed: May 1, 2019
    Date of Patent: January 11, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jin-Mu Yin, Hung-Chao Kao, Dian-Hau Chen, Hui-Chi Chen, Hsiang-Ku Shen, Yen-Ming Chen
  • Publication number: 20210398896
    Abstract: Semiconductor devices, integrated circuits and methods of forming the same are provided. In one embodiment, a semiconductor device includes a metal-insulator-metal structure which includes a bottom conductor plate layer including a first opening and a second opening, a first dielectric layer over the bottom conductor plate layer, a middle conductor plate layer over the first dielectric layer and including a third opening, a first dummy plate disposed within the third opening, and a fourth opening, a second dielectric layer over the middle conductor plate layer, and a top conductor plate layer over the second dielectric layer and including a fifth opening, a second dummy plate disposed within the fifth opening, a sixth opening, and a third dummy plate disposed within the sixth opening. The first opening, the first dummy plate, and the second dummy plate are vertically aligned.
    Type: Application
    Filed: September 3, 2021
    Publication date: December 23, 2021
    Inventors: Yuan-Yang Hsiao, Hsiang-Ku Shen, Dian-Hau Chen
  • Publication number: 20210376058
    Abstract: Semiconductor devices and methods of forming the same are provided. In one embodiment, a semiconductor device includes a contact feature in a first dielectric layer, a first passivation layer over the contact feature, a bottom conductor plate layer disposed over the first passivation layer and including a first plurality of sublayers, a second dielectric layer over the bottom conductor plate layer, a middle conductor plate layer disposed over the second dielectric layer and including a second plurality of sublayers, a third dielectric layer over the middle conductor plate layer, a top conductor plate layer disposed over the third dielectric layer and including a third plurality of sublayers, and a second passivation layer over the top conductor plate layer.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 2, 2021
    Inventors: Hsiang-Ku Shen, Dian-Hau Chen
  • Publication number: 20210328005
    Abstract: A metal-insulator-metal (MIM) capacitor structure includes a bottom electrode, a first oxide layer adjacent the bottom electrode, and a first high-k dielectric layer over the bottom electrode and the first oxide layer. A middle electrode is over the first high-k dielectric layer and a second oxide layer is adjacent the middle electrode. A second high-k dielectric layer may be over the middle electrode and the second oxide layer, a top electrode may be over the second high-k dielectric layer.
    Type: Application
    Filed: July 2, 2021
    Publication date: October 21, 2021
    Inventors: Hsiang-Ku SHEN, Ming-Hong KAO, Hui-Chi CHEN, Dian-Hau CHEN, Yen-Ming CHEN