Patents by Inventor HSIANG-YU LEE

HSIANG-YU LEE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240046966
    Abstract: A three-dimensional (3D) NAND memory structure may include material layers arranged in a vertical stack including alternating horizontal insulating layers and wordline layers. The material layers may be etched to form a landing pad. A vertical wordline may extend through one or more of the horizontal wordline layers beneath the landing pad. The vertical wordline may be conductively connected to a top horizontal wordline, and the vertical wordline may be insulated from any of the horizontal wordlines that the vertical wordline extends through beneath the top horizontal wordline. A liner may also be formed over a top horizontal wordline at the landing pad.
    Type: Application
    Filed: August 8, 2023
    Publication date: February 8, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Hsiang Yu Lee, Pradeep K. Subrahmanyan, Takaya Matsushita, Changwoo Sun
  • Publication number: 20230422405
    Abstract: A circuit structure for hot-press bonding includes a first substrate, a second substrate and a conductive adhesive layer. The circuit structure further includes a first conductive layer having a plurality of connection electrodes arranged on the first substrate, a second conductive layer including a plurality of backup electrodes respectively corresponding to the connection electrodes, an insulating layer arranged between the first conductive layer and the second conductive layer, and a plurality of conductive via arranged in the insulating layer and connected to corresponding connection electrodes and backup electrodes to provide current conduction paths therebetween, thus provide additional conduction path for the connection electrodes even the connection electrodes have fracture and enhance yield and connection reliability.
    Type: Application
    Filed: May 16, 2023
    Publication date: December 28, 2023
    Inventors: Hsiang-Yu LEE, Shang CHIN, Ping-Tsun LIN
  • Publication number: 20230413569
    Abstract: A three-dimensional NAND flash memory structure may include solid channel cores of epitaxial silicon that are grown directly from a silicon substrate reference. The alternating oxide-nitride material layers may be formed as a stack, and a channel hole may be etched through the material layers that extends down to the silicon substrate. A tunneling layer may be formed around the channel hole to contact the alternating material layers, and an epitaxial silicon core may be grown from the silicon substrate up through the channel holes. In some implementations, support structures may be formed in channel holes or in slits of the memory array to provide physical support while the epitaxial silicon cores are grown through the channels.
    Type: Application
    Filed: May 18, 2023
    Publication date: December 21, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Hsiang Yu Lee, Pradeep K. Subrahmanyan
  • Publication number: 20230380170
    Abstract: A three-dimensional NAND flash memory structure may include solid channel cores of epitaxial silicon that are grown directly from a silicon substrate reference. The alternating oxide-nitride material layers may be formed as a stack, and a channel hole may be etched through the material layers that extends down to the silicon substrate. A tunneling layer may be formed around the channel hole to contact the alternating material layers, and an epitaxial silicon core may be grown from the silicon substrate up through the channel holes. In some implementations, support structures may be formed in channel holes or in slits of the memory array to provide physical support while the epitaxial silicon cores are grown through the channels.
    Type: Application
    Filed: May 18, 2023
    Publication date: November 23, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Hsiang Yu Lee, Pradeep K. Subrahmanyan
  • Patent number: 11809655
    Abstract: A touch control method is provided. The method includes: providing a touch device with multiple touch electrodes; determining whether an object is located in a sensing distance; detecting a sensing group sensing the object if the determination is yes; determining whether an electrode amount in the electrode group is between a first value and a second value; determining whether a sensing time of a predetermined proportion of the touch electrodes in the sensing group is equal to or greater than a predetermined time; executing a fingerprint recognition mode if the electrode amount is between the first value and the second value, and the sensing time is equal to or greater than the predetermined time; executing a touch operation mode if the electrode amount is less than the first value or greater than the second value, or the sensing time is less than the predetermined time.
    Type: Grant
    Filed: January 31, 2023
    Date of Patent: November 7, 2023
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin
  • Publication number: 20230168763
    Abstract: A touch control method is provided. The method includes: providing a touch device with multiple touch electrodes; determining whether an object is located in a sensing distance; detecting a sensing group sensing the object if the determination is yes; determining whether an electrode amount in the electrode group is between a first value and a second value; determining whether a sensing time of a predetermined proportion of the touch electrodes in the sensing group is equal to or greater than a predetermined time; executing a fingerprint recognition mode if the electrode amount is between the first value and the second value, and the sensing time is equal to or greater than the predetermined time; executing a touch operation mode if the electrode amount is less than the first value or greater than the second value, or the sensing time is less than the predetermined time.
    Type: Application
    Filed: January 31, 2023
    Publication date: June 1, 2023
    Inventors: Hsiang-Yu LEE, Shang CHIN, Ping-Tsun LIN
  • Patent number: 11651612
    Abstract: A fingerprint sensing apparatus includes a plurality of fingerprint sensing electrodes, a plurality of data lines respectively sandwiched by a first capacitance-shielding wire and a second capacitance-shielding wire, a fingerprint sensing circuit including a driver circuit with a gain larger than zero or equal to zero. During fingerprint sensing, the fingerprint sensing circuit sends a capacitance-exciting signal to a selected fingerprint sensing electrode, receiving a fingerprint sensing signal from the selected fingerprint sensing electrode, processing the fingerprint sensing signal with the driver circuit into a capacitance-eliminating signal and applying the capacitance-eliminating signal to the first capacitance-shielding wire and the second capacitance-shielding wire respectively.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: May 16, 2023
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Chia-Hsun Tu, Ping-Tsun Lin
  • Patent number: 11614821
    Abstract: A touch control method is provided. The method includes: providing a touch device with multiple touch electrodes; determining whether an object is located in a sensing distance; detecting a sensing group sensing the object if the determination is yes; determining whether an electrode amount in the electrode group is between a first value and a second value; determining whether a sensing time of a predetermined proportion of the touch electrodes in the sensing group is equal to or greater than a predetermined time; executing a fingerprint recognition mode if the electrode amount is between the first value and the second value, and the sensing time is equal to or greater than the predetermined time; executing a touch operation mode if the electrode amount is less than the first value or greater than the second value, or the sensing time is less than the predetermined time.
    Type: Grant
    Filed: November 28, 2021
    Date of Patent: March 28, 2023
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin
  • Patent number: 11402953
    Abstract: A fingerprint-touch sensing apparatus includes a substrate, a sensing electrode layer, a plurality of electrode switch circuits, a plurality of capacitance-signal switch circuits respectively connected to a plurality of data lines and a capacitance-signal line, and a fingerprint-touch sensing control integrated circuit. The sensing electrode layer includes a plurality of sensing electrodes arranged in multiple columns and multiple rows. The fingerprint-touch sensing control integrated circuit controls the capacitance-signal switch circuits and the electrode switch circuits to select one or more sensing electrodes to conduct sensing, thus providing the flexible function of fingerprint sensing or touch sensing.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: August 2, 2022
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin
  • Publication number: 20220229510
    Abstract: A touch control method is provided. The method includes: providing a touch device with multiple touch electrodes; determining whether an object is located in a sensing distance; detecting a sensing group sensing the object if the determination is yes; determining whether an electrode amount in the electrode group is between a first value and a second value; determining whether a sensing time of a predetermined proportion of the touch electrodes in the sensing group is equal to or greater than a predetermined time; executing a fingerprint recognition mode if the electrode amount is between the first value and the second value, and the sensing time is equal to or greater than the predetermined time; executing a touch operation mode if the electrode amount is less than the first value or greater than the second value, or the sensing time is less than the predetermined time.
    Type: Application
    Filed: November 28, 2021
    Publication date: July 21, 2022
    Inventors: Hsiang-Yu LEE, Shang CHIN, Ping-Tsun LIN
  • Publication number: 20220229502
    Abstract: A fingerprint-touch sensing apparatus includes a substrate, a sensing electrode layer, a plurality of electrode switch circuits, a plurality of capacitance-signal switch circuits respectively connected to a plurality of data lines and a capacitance-signal line, and a fingerprint-touch sensing control integrated circuit. The sensing electrode layer includes a plurality of sensing electrodes arranged in multiple columns and multiple rows. The fingerprint-touch sensing control integrated circuit controls the capacitance-signal switch circuits and the electrode switch circuits to select one or more sensing electrodes to conduct sensing, thus providing the flexible function of fingerprint sensing or touch sensing.
    Type: Application
    Filed: December 6, 2021
    Publication date: July 21, 2022
    Inventors: Hsiang-Yu LEE, Shang CHIN, Ping-Tsun LIN
  • Publication number: 20220083757
    Abstract: A fingerprint sensing apparatus includes a plurality of fingerprint sensing electrodes, a plurality of data lines respectively sandwiched by a first capacitance-shielding wire and a second capacitance-shielding wire, a fingerprint sensing circuit including a driver circuit with a gain larger than zero or equal to zero. During fingerprint sensing, the fingerprint sensing circuit sends a capacitance-exciting signal to a selected fingerprint sensing electrode, receiving a fingerprint sensing signal from the selected fingerprint sensing electrode, processing the fingerprint sensing signal with the driver circuit into a capacitance-eliminating signal and applying the capacitance-eliminating signal to the first capacitance-shielding wire and the second capacitance-shielding wire respectively.
    Type: Application
    Filed: September 14, 2020
    Publication date: March 17, 2022
    Inventors: Hsiang-Yu LEE, Shang CHIN, Chia-Hsun TU, Ping-Tsun LIN
  • Patent number: 11003885
    Abstract: A high-precision fingerprint sensing method includes providing a fingerprint sensor (10) having a plurality of transistor switches (Q), a plurality of sensing electrodes (SE), a plurality of gate lines (GL), a plurality of data lines (DL), arranging at least one sampling conductor (SC) near the gate lines (GL) to form a coupling capacitance between the sampling conductor (SC) and the gate lines (GL) and to render the sampling conductor (SC) sensing noise on the adjacent gate lines (GL), inverting the noise signal (Vn) obtained from the sampling conductor (SC) into a noise-suppressing signal (Vc) and sending the noise-suppressing signal (Vc) to the fingerprint sensor (10) to suppress noise of the fingerprint sensor (10) and enhance fingerprint sensing accuracy.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: May 11, 2021
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin, Chia-Hsun Tu
  • Patent number: 10984212
    Abstract: The present invention provides a fingerprint detection device, including: a substrate, a switch circuit layer, a sensing electrode layer, a heat dissipating antistatic structure layer, and a protective layer. The switch circuit layer is disposed on the substrate. The sensing electrode layer is disposed on the switch circuit layer, and includes a plurality of sensing electrodes. The heat dissipating antistatic structure layer is disposed on the sensing electrode layer, and includes a conductive mesh and a plurality of shunt heat sinks. The conductive mesh is formed with a plurality of mesh openings, and configured to shunt charges. The shunt heat sinks are adjacent to the conductive mesh, and correspond to the sensing electrodes. The shunt heat sinks are electrically insulated from each other, electrically insulated from the conductive mesh, and electrically insulated from the sensing electrodes. The protective layer is disposed on the heat dissipating antistatic structure layer.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: April 20, 2021
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin, Chia-Hsun Tu
  • Publication number: 20210097249
    Abstract: The present invention provides a fingerprint detection device, including: a substrate, a switch circuit layer, a sensing electrode layer, a heat dissipating antistatic structure layer, and a protective layer. The switch circuit layer is disposed on the substrate. The sensing electrode layer is disposed on the switch circuit layer, and includes a plurality of sensing electrodes. The heat dissipating antistatic structure layer is disposed on the sensing electrode layer, and includes a conductive mesh and a plurality of shunt heat sinks. The conductive mesh is formed with a plurality of mesh openings, and configured to shunt charges. The shunt heat sinks are adjacent to the conductive mesh, and correspond to the sensing electrodes. The shunt heat sinks are electrically insulated from each other, electrically insulated from the conductive mesh, and electrically insulated from the sensing electrodes. The protective layer is disposed on the heat dissipating antistatic structure layer.
    Type: Application
    Filed: November 6, 2019
    Publication date: April 1, 2021
    Inventors: Hsiang-Yu LEE, Shang CHIN, Ping-Tsun LIN, Chia-Hsun TU
  • Patent number: 10872218
    Abstract: A fingerprint identification device includes a substrate, at least two electrode areas, at least one dedicated sensing signal line, plural electrode selection switch groups, and plural signal lines. Each electrode area has plural electrodes. The signal lines are divided into plural first directional signal lines and plural second directional signal lines. The first directional signal lines are perpendicular to the second directional signal lines. The plural electrode selection switch groups sequentially or dynamically select at least one electrode as a sensing electrode block in each electrode area. The plural electrode selection switch groups configure the electrodes surrounding the sensing electrode block as at least two corresponding deflection electrode blocks. Each sensing electrode block is corresponding to at least two deflection electrode blocks. Each deflection electrode block has plural electrodes.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: December 22, 2020
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin
  • Patent number: 10725597
    Abstract: A hovering and touch sensing apparatus includes a plurality of touch sensing electrodes, a system circuit and a touch control circuit. When an operating object approaches to or touches the touch sensing electrodes for hovering or touch sensing operation, there is no common circuit loop between the system circuit and the touch control circuit to prevent the influence of the system circuit to the touch-sensing circuit. Besides, the touch control circuit sends a capacitance-exciting signal to the operating object through a first specific conductor of the system circuit, thus more effectively send the capacitance-exciting signal to the operating object and enhance the preciseness for sensing the touch sensing signal.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: July 28, 2020
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin, Chia-Hsun Tu
  • Patent number: 10685207
    Abstract: A fingerprint sensing structure includes a flexible substrate divided into a fingerprint-sensing region and a non-fingerprint-sensing region. In the non-fingerprint-sensing region, the fingerprint sensing structure includes a plurality of organic insulating layers, a wiring layer having conductive wires and at least one inorganic insulating layer, where the wiring layer is sandwiched between two organic insulating layers to render the portion of the fingerprint sensing structure corresponding to non-fingerprint-sensing region to have bending with curvature radius not larger than 2 mm. In the finger sensing region, the fingerprint sensing structure includes a thin film transistor layer and a sensing electrode layer. The thin film transistor layer includes a plurality of thin film transistors, a plurality of conductive wires respectively along a first direction and a second direction. The sensing electrode layer has a plurality of sensing electrodes to sense surface features of living organism.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: June 16, 2020
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin, Chia-Hsun Tu
  • Patent number: 10671223
    Abstract: An organic light emitting display apparatus with force and touch sensing includes a touch protection layer, a touch electrode layer, a resilient material layer, a force electrode layer, a thin-film-encapsulation layer, a common electrode layer, an organic light emitting material layer and a thin film transistor substrate from top to bottom. The thin film transistor substrate includes a pixel electrode layer, a thin film transistor layer and a transistor substrate from top to bottom. The organic light emitting display apparatus further includes a display controller to drive the organic light emitting material layer and a force touch controller for sensing touch position on the touch electrode layer and force exerted on the force electrode layer.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: June 2, 2020
    Assignee: SUPERC-TOUCH CORPORATION
    Inventors: Hsiang-Yu Lee, Shang Chin, Ping-Tsun Lin, Chia-Hsun Tu
  • Patent number: D993244
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: July 25, 2023
    Assignee: AMBIT MICROSYSTEMS (SHANGHAI) LTD.
    Inventor: Hsiang-Yu Lee