Patents by Inventor Hsien-Chin Lin

Hsien-Chin Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120015493
    Abstract: Provided is a high-k metal gate structure formed over a semiconductor fin. A nitride layer is formed over the gate structure and the semiconductor fin, using two separate deposition operations, the first forming a very thin nitride film. Implantation operations may be carried out in between the two nitride film deposition operations. The first nitride film may be SiNx or SiCNx and the second nitride film is SiCNx. The nitride films may be combined to form low wet etch rate spacers enabling further processing operations to be carried out without damaging underlying structures and without requiring the formation of further dummy spacers. Further processing operations include epitaxial silicon/SiGe processing sequences and source/drain implanting operations carried out with the low etch rate spacers intact.
    Type: Application
    Filed: September 22, 2011
    Publication date: January 19, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Pin Lin, Wen-Sheh Huang, Tian-Choy Gan, Chia-Lung Hung, Hsien-Chin Lin, Shyue-Shyh Lin
  • Publication number: 20110248348
    Abstract: Provided is a method of fabricating a semiconductor device that includes forming first and second fins over first and second regions of a substrate, forming first and second gate structures over the first and second fins, the first and second gate structures including first and second poly gates, forming an inter-level dielectric (ILD) over the substrate, performing a chemical mechanical polishing on the ILD to expose the first and second poly gates, forming a mask to protect the first poly gate of the first gate structure, removing the second poly gate thereby forming a first trench, removing the mask, partially removing the first poly gate thereby forming a second trench, forming a work function metal layer partially filling the first and second trenches, forming a fill metal layer filling a remainder of the first and second trenches, and removing the metal layers outside the first and second trenches.
    Type: Application
    Filed: April 8, 2010
    Publication date: October 13, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tian-Choy Gan, Hsien-Chin Lin, Chia-Pin Lin, Shyue-Shyh Lin, Li-Shiun Chen, Shin Hsien Liao
  • Patent number: 8034677
    Abstract: Provided is a high-k metal gate structure formed over a semiconductor fin. A nitride layer is formed over the gate structure and the semiconductor fin, using two separate deposition operations, the first forming a very thin nitride film. Implantation operations such as an LDD or a PKT implant, are carried out in between the two nitride film deposition operations. The first nitride film may be SiN, or SiCNx and the second nitride film is SiCNx with a low wet etch rate in H3PO4 and dilute HF acid. The nitride films may be combined to form low wet etch rate spacers enabling further processing operations to be carried out without damaging underlying structures and without requiring the formation of further dummy spacers. Further processing operations include epitaxial silicon/SiGe processing sequences and source/drain implanting operations carried out with the low etch rate spacers intact.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: October 11, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Pin Lin, Wen-Sheh Huang, Tian-Choy Gan, Chia-Lung Hung, Hsien-Chin Lin, Shyue-Shyh Lin
  • Publication number: 20110227162
    Abstract: A method includes forming first and second fins of a finFET extending above a semiconductor substrate, with a shallow trench isolation (STI) region in between, and a distance between a top surface of the STI region and top surfaces of the first and second fins. First and second fin extensions are provided on top and side surfaces of the first and second fins above the top surface of the STI region. Material is removed from the STI region, to increase the distance between the top surface of the STI region and top surfaces of the first and second fins. A conformal stressor dielectric material is deposited over the fins and STI region. The conformal dielectric stressor material is reflowed, to flow into a space between the first and second fins above a top surface of the STI region, to apply stress to a channel of the finFET.
    Type: Application
    Filed: March 17, 2010
    Publication date: September 22, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Pin LIN, Chien-Tai CHAN, Hsien-Chin LIN, Shyue-Shyh LIN
  • Publication number: 20110207279
    Abstract: Provided is a high-k metal gate structure formed over a semiconductor fin. A nitride layer is formed over the gate structure and the semiconductor fin, using two separate deposition operations, the first forming a very thin nitride film. Implantation operations such as an LDD or a PKT implant, are carried out in between the two nitride film deposition operations. The first nitride film may be SiNx or SiCNx and the second nitride film is SiCNx with a low wet etch rate in H3PO4 and dilute HF acid. The nitride films may be combined to form low wet etch rate spacers enabling further processing operations to be carried out without damaging underlying structures and without requiring the formation of further dummy spacers. Further processing operations include epitaxial silicon/SiGe processing sequences and source/drain implanting operations carried out with the low etch rate spacers intact.
    Type: Application
    Filed: February 25, 2010
    Publication date: August 25, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Pin LIN, Wen-Sheh HUANG, Tian-Choy GAN, Chia-Lung HUNG, Hsien-Chin LIN, Shyue-Shyh LIN
  • Publication number: 20110127610
    Abstract: A system and method for manufacturing multiple-gate semiconductor devices is disclosed. An embodiment comprises multiple fins, wherein intra-fin isolation regions extend into the substrate less than inter-fin isolation regions. Regions of the multiple fins not covered by the gate stack are removed and source/drain regions are formed from the substrate so as to avoid the formation of voids between the fins in the source/drain region.
    Type: Application
    Filed: June 9, 2010
    Publication date: June 2, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tung Ying Lee, Li-Wen Weng, Chien-Tai Chan, Da-Wen Lin, Hsien-Chin Lin
  • Publication number: 20060014351
    Abstract: A method of forming a low leakage MOS transistor. The transistor includes a gate on a substrate with at least two first spacers adjacent to the gate. A first doped region is formed under each first spacer and a second doped region is formed adjacent to each first doped region, wherein the first doped region and the second doped region are formed in the substrate. A second spacer is formed adjacent to each first spacer. A metal layer is formed on the exposed substrate, the first spacers and the second spacers. The substrate is annealed to form salicide regions on the exposed substrate.
    Type: Application
    Filed: July 15, 2004
    Publication date: January 19, 2006
    Inventors: Cheng-Yao Lo, Hsien-Chin Lin
  • Patent number: 6444544
    Abstract: A method of forming aluminum guard structures in copper interconnect structures, used to protect the copper interconnect structures from a laser write procedure, performed to an adjacent copper fuse element, has been developed. The method features forming guard structure openings in an upper level of the copper interconnect structures, in a region adjacent to a copper fuse element. Deposition and patterning of an aluminum layer result in the formation of aluminum guard structures, located in the guard structure openings. The aluminum guard structures protect the copper interconnect structures from the oxidizing and corrosive effects of oxygen, fluorine and water ions, which are generated during a laser write procedure, performed to the adjacent copper fuse element.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: September 3, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chu-Wei Hu, Chung-Te Lin, Kuo-Hua Pan, Hsien-Chin Lin
  • Patent number: 6380021
    Abstract: A new method for forming ultra-shallow junctions for PMOSFET while reducing short channel effects is described. A semiconductor substrate wafer is provided wherein there is at least one NMOS active area and at least one PMOS active area. Gate electrodes are formed in both the NMOS and PMOS areas. N-type source/drain extensions are implanted into the NMOS area. The wafer is annealed whereby the n-type source/drain extensions are driven in. Thereafter, p-type source/drain extensions are implanted in the PMOS area wherein the p-type source/drain extensions are not subjected to an annealing step. Spacers are formed on sidewalls of the NMOS and PMOS gate electrodes. Source/drain regions are implanted into the NMOS and PMOS areas wherein the source/drain regions are self-aligned to the spacers to complete formation of an integrated circuit device.
    Type: Grant
    Filed: June 20, 2000
    Date of Patent: April 30, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jyh-Haur Wang, Chih-Chiang Wang, Hsien-Chin Lin, Kuo-Hua Pan, Carlos H. Diaz
  • Patent number: 6362035
    Abstract: A method for incorporating an ion implanted channel stop layer under field isolation for a twin-well CMOS process is described in which the layer is placed directly under the completed field isolation by a blanket boron ion implant over the whole wafer. The channel stop implant follows planarization of the field oxide and is thereby essentially at the same depth in both field and active regions. Subsequently implanted p- and n-wells are formed deeper than the channel stop layer, the n-well implant being of a sufficiently higher dose to over compensate the channel stop layer, thereby removing it's effect from the n-well. A portion of the channel stop implant under the field oxide adjacent the p-well provides effective anti-punchthrough protection with only a small increase in junction capacitance. The method is shown for, and is particularly effective in, processes utilizing shallow trench isolation.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: March 26, 2002
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jiaw-Ren Shih, Shui-Hung Chen, Jian-Hsing Lee, Hsien-Chin Lin
  • Patent number: 6235600
    Abstract: A process for fabricating input/output, N channel, (I/O NMOS) devices, featuring an ion implanted nitrogen region, used to reduce hot carrier electron, (HEC), injection, has been developed. The process features implanting a nitorgen region, at the interface of an overlying silicon oxide layer, and an underlying lightly doped source/drain, (LDD), region. The implantation procedure can either be performed prior to, or after, the deposition of a silicon oxide liner layer, in both cases resulting in a desired nitrogen pile-up at the oxide-LDD interface, as well as resulting, in a more graded LDD profile. An increase in the time to fail, in regards to HCE injection, for these I/O NMOS devices, is realized, when compared to counterparts fabricated without the nitrogen implantation procedure.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: May 22, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Mu-Chi Chiang, Hsien-Chin Lin, Jiaw-Ren Shih
  • Patent number: 5281492
    Abstract: A cover device for a storage battery includes a sub-cover that includes a flat bottom with a plurality of first vent-holes, a top portion and a connecting wall which interconnects the flat bottom and the top portion to define a space therein. The cover device further includes a plurality of tubes, each of which having n open end which is connected to each of the first vent-holes of the flat bottom and a closed end which is plugged into a respective inlet-hole of a main cover of the storage battery so as to close the inlet-hole, and a second vent-hole which is formed in the sub-cover and which communicates the space in the sub-cover with an exterior of the same.
    Type: Grant
    Filed: April 29, 1993
    Date of Patent: January 25, 1994
    Assignee: Ztong Yee Industrial Co., Ltd.
    Inventor: Hsien-Chin Lin
  • Patent number: RE40138
    Abstract: A process for fabricating input/output, N channel, (I/O NMOS) devices, featuring an ion implanted nitrogen region, used to reduce hot carrier electron, (HEC), injection, has been developed. The process features implanting a nitorgen region, at the interface of an overlying silicon oxide layer, and an underlying lightly doped source/drain, (LDD), region. The implantation procedure can either be performed prior to, or after, the deposition of a silicon oxide liner layer, in both cases resulting in a desired nitrogen pile-up at the oxide-LDD interface, as well as resulting, in a more graded LDD profile. An increase in the time to fail, in regards to HCE injection, for these I/O NMOS devices, is realized, when compared to counterparts fabricated without the nitrogen implantation procedure.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: March 4, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Mu-Chi Chiang, Hsien-Chin Lin, Jiaw-Ren Shih