Patents by Inventor Hsin-Yu Hsu

Hsin-Yu Hsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11996484
    Abstract: A semiconductor device includes a substrate, two source/drain features over the substrate, channel layers connecting the two source/drain features, and a gate structure wrapping around each of the channel layers. Each of the two source/drain features include a first epitaxial layer, a second epitaxial layer over the first epitaxial layer, and a third epitaxial layer on inner surfaces of the second epitaxial layer. The channel layers directly interface with the second epitaxial layers and are separated from the third epitaxial layers by the second epitaxial layers. The first epitaxial layers include a first semiconductor material with a first dopant. The second epitaxial layers include the first semiconductor material with a second dopant. The second dopant has a higher mobility than the first dopant.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: May 28, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Hao Lin, Chih-Hsuan Chen, Chia-Hao Pao, Chih-Chuan Yang, Chih-Yu Hsu, Hsin-Wen Su, Chia-Wei Chen
  • Patent number: 11991479
    Abstract: The disclosure provides a time-lapse photographic device. The time-lapse photographic device includes a camera module, a drive module, an environment detection module, and a control unit. The drive module is connected to the camera module to drive the camera module to rotate. The environment detection module is configured to detect an external environment of the time-lapse photographic device to generate an environment detection signal. The control unit is electrically connected to the camera module, the drive module, and the environment detection module. The control unit generates, according to a shooting stop parameter, a plurality of intermittent drive signals to control the drive module, and controls the camera module to shoot at intervals of the drive signals. The control unit adjusts operation of at least one of the camera module and the drive module according to the environment detection signal.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: May 21, 2024
    Assignee: ASUSTEK COMPUTER INC.
    Inventors: Hsin-Yi Pu, Kai-Yu Hsu, Lai-Peng Wong, Chieh Li, Ting-Han Chang, Ching-Xsuan Chen
  • Patent number: 11942442
    Abstract: A package structure includes a first redistribution circuit structure, a second redistribution circuit structure, a semiconductor die, a waveguide structure, and an antenna. The semiconductor die is sandwiched between and electrically coupled to the first redistribution circuit structure and the second redistribution circuit structure. The waveguide structure is located aside and electrically coupled to the semiconductor die, wherein the waveguide structure includes a part of the first redistribution circuit structure, a part of the second redistribution circuit structure and a plurality of first through vias each connecting to the part of the first redistribution circuit structure and the part of the second redistribution circuit structure. The antenna is located on the semiconductor die, wherein the second redistribution circuit structure is sandwiched between the antenna and the semiconductor die, and the antenna is electrically communicated with the semiconductor die through the waveguide structure.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sen-Kuei Hsu, Hsin-Yu Pan
  • Patent number: 11508724
    Abstract: A composite power element includes a substrate structure, an insulation layer, a dielectric layer, a MOSFET, and a Zener diode. The MOSFET is formed in a transistor formation region of the substrate structure. The Zener diode is formed in a circuit element formation region of the substrate structure, and includes a Zener diode doping structure that is formed in the substrate structure and is covered by the insulation layer. The Zener diode doping structure includes a first P-type doped region and a first N-type doped region that is formed on an inner side of the first P-type doped region. The Zener diode further includes a Zener diode metal structure that is formed on the dielectric layer and sequentially passes through the dielectric layer and the insulation layer to be electrically connected to the first P-type doped region and the first N-type doped region.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: November 22, 2022
    Assignee: CYSTECH ELECTRONICS CORP.
    Inventors: Hsin-Yu Hsu, Yung-Chang Chen
  • Publication number: 20220285341
    Abstract: A composite power element includes a substrate structure, an insulation layer, a dielectric layer, a MOSFET, and a Zener diode. The MOSFET is formed in a transistor formation region of the substrate structure. The Zener diode is formed in a circuit element formation region of the substrate structure, and includes a Zener diode doping structure that is formed in the substrate structure and is covered by the insulation layer. The Zener diode doping structure includes a first P-type doped region and a first N-type doped region that is formed on an inner side of the first P-type doped region. The Zener diode further includes a Zener diode metal structure that is formed on the dielectric layer and sequentially passes through the dielectric layer and the insulation layer to be electrically connected to the first P-type doped region and the first N-type doped region.
    Type: Application
    Filed: June 29, 2021
    Publication date: September 8, 2022
    Inventors: HSIN-YU HSU, YUNG-CHANG CHEN
  • Patent number: 11367798
    Abstract: A power element includes a substrate structure, an insulation layer, a dielectric layer, a transistor, and a plurality of zener diodes. The transistor is located in a transistor formation region of the substrate structure. The plurality of zener diodes are located in a circuit element formation region of the substrate structure and connected in series with each other. Each of the zener diodes includes a zener diode doping structure and a zener diode metal structure. The zener diode doping structure is formed on the insulation layer and is covered by the dielectric layer. The zener diode doping structure includes a P-type doped region and an N-type doped region that are in contact with each other. The zener diode metal structure is formed on the dielectric layer and partially passes through the dielectric layer to be electrically connected to the P-type doped region and the N-type doped region.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: June 21, 2022
    Assignee: CYSTECH ELECTRONICS CORP.
    Inventor: Hsin-Yu Hsu
  • Patent number: 11257947
    Abstract: A metal oxide semiconductor field effect transistor and a method for manufacturing the same are provided. The metal oxide semiconductor field effect transistor includes a substrate structure, doped regions, an oxide layer structure, semiconductor layer structures, a dielectric layer structure, and a metal structure. The substrate structure includes a base layer and an epitaxial layer. The epitaxial layer forms a plurality of trenches along a first direction. Any two adjacent trenches form a pitch therebetween, and the pitches formed between the trenches are increased along the first direction. The doped regions are formed at bottoms of the trenches. The oxide layer structure is formed on inner walls of the trenches and a surface of the epitaxial layer. The semiconductor layer structures are respectively formed in the trenches. The dielectric layer structure is formed on the oxide layer structure. The metal structure is formed on the dielectric layer structure.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: February 22, 2022
    Assignee: CYSTECH ELECTRONICS CORP.
    Inventors: Hsin-Yu Hsu, Yung-Chang Chen, Chen-Huang Wang
  • Patent number: 11201147
    Abstract: A composite power element and a method for manufacturing the same are provided. The power element includes a substrate structure, an insulation layer, a dielectric layer, a metal-oxide-semiconductor field-effect transistor (MOSFET), and a zener diode. The MOSFET is formed in a transistor formation region of the substrate structure. The zener diode is formed in a circuit element formation region of the substrate structure, and includes a zener diode doped structure formed on the insulation layer and covered by the dielectric layer. The zener diode doped structure includes a P-type doped region and an N-type doped region. The zener diode includes a zener diode metal structure formed on the dielectric layer and partially passes through the dielectric layer to be electrically connected to the P-type doped region and the N-type doped region. The zener diode is configured to receive a reverse bias voltage when the power element is energized.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: December 14, 2021
    Assignee: CYSTECH ELECTRONICS CORP.
    Inventors: Hsin-Yu Hsu, Chen-Huang Wang, Shih-Chieh Hung
  • Publication number: 20210358907
    Abstract: A composite power element and a method for manufacturing the same are provided. The power element includes a substrate structure, an insulation layer, a dielectric layer, a metal-oxide-semiconductor field-effect transistor (MOSFET), and a zener diode. The MOSFET is formed in a transistor formation region of the substrate structure. The zener diode is formed in a circuit element formation region of the substrate structure, and includes a zener diode doped structure formed on the insulation layer and covered by the dielectric layer. The zener diode doped structure includes a P-type doped region and an N-type doped region. The zener diode includes a zener diode metal structure formed on the dielectric layer and partially passes through the dielectric layer to be electrically connected to the P-type doped region and the N-type doped region. The zener diode is configured to receive a reverse bias voltage when the power element is energized.
    Type: Application
    Filed: August 31, 2020
    Publication date: November 18, 2021
    Inventors: HSIN-YU HSU, Chen-Huang Wang, Shih-Chieh Hung
  • Publication number: 20210359144
    Abstract: A power element includes a substrate structure, an insulation layer, a dielectric layer, a transistor, and a plurality of zener diodes. The transistor is located in a transistor formation region of the substrate structure. The plurality of zener diodes are located in a circuit element formation region of the substrate structure and connected in series with each other. Each of the zener diodes includes a zener diode doping structure and a zener diode metal structure. The zener diode doping structure is formed on the insulation layer and is covered by the dielectric layer. The zener diode doping structure includes a P-type doped region and an N-type doped region that are in contact with each other. The zener diode metal structure is formed on the dielectric layer and partially passes through the dielectric layer to be electrically connected to the P-type doped region and the N-type doped region.
    Type: Application
    Filed: August 31, 2020
    Publication date: November 18, 2021
    Inventor: HSIN-YU HSU
  • Publication number: 20210351292
    Abstract: A metal oxide semiconductor field effect transistor and a method for manufacturing the same are provided. The metal oxide semiconductor field effect transistor includes a substrate structure, doped regions, trench oxide layers, semiconductor layer structures, a dielectric layer structure and a metal structure. The substrate structure includes a base layer and an epitaxial layer having a plurality of trenches. A trench depth of each trench is X1 micrometer. The doped regions are respectively formed at bottoms of the trenches. The trench oxide layers are respectively formed on inner walls of the trenches. An oxide layer thickness of each trench oxide layer is X2 micrometers. X1 and X2 conform to the following relationship: 0.05X1?X2?0.25X1. The semiconductor layer structures are respectively formed in the trenches. The dielectric layer structure is formed on the semiconductor layer structures. The metal structure is formed on the dielectric layer structure.
    Type: Application
    Filed: May 5, 2020
    Publication date: November 11, 2021
    Inventors: HSIN-YU HSU, YUNG-CHANG CHEN, Chen-Huang Wang
  • Publication number: 20210351291
    Abstract: A metal oxide semiconductor field effect transistor and a method for manufacturing the same are provided. The metal oxide semiconductor field effect transistor includes a substrate structure, doped regions, an oxide layer structure, semiconductor layer structures, a dielectric layer structure, and a metal structure. The substrate structure includes a base layer and an epitaxial layer. The epitaxial layer forms a plurality of trenches along a first direction. Any two adjacent trenches form a pitch therebetween, and the pitches formed between the trenches are increased along the first direction. The doped regions are formed at bottoms of the trenches. The oxide layer structure is formed on inner walls of the trenches and a surface of the epitaxial layer. The semiconductor layer structures are respectively formed in the trenches. The dielectric layer structure is formed on the oxide layer structure. The metal structure is formed on the dielectric layer structure.
    Type: Application
    Filed: May 5, 2020
    Publication date: November 11, 2021
    Inventors: HSIN-YU HSU, YUNG-CHANG CHEN, Chen-Huang Wang
  • Patent number: 10790367
    Abstract: A high-voltage metal-oxide-semiconductor field-effect transistor applied to a high-voltage range includes a substrate, an epitaxial layer, a plurality of first doped regions, a plurality of first trenches, a plurality of second trenches, a plurality of second doped regions, and a metal layer. The epitaxial layer is disposed on the substrate and used as a drain electrode. The plurality of first doped regions are disposed in the epitaxial layer. The plurality of first trenches are disposed on the plurality of doped regions in a spaced manner. Each of the first trenches has a first trench oxide layer and a first semiconductor layer which is connected to a source electrode. The plurality of second trenches are disposed between each of the first trenches in a spaced manner. Each of the second trenches has a second trench oxide layer and a second semiconductor layer which is connected to a gate electrode.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: September 29, 2020
    Assignee: Cystech Electronics Corp.
    Inventors: Hsin-Yu Hsu, Chen-Huang Wang
  • Publication number: 20190288083
    Abstract: A high-voltage metal-oxide-semiconductor field-effect transistor applied to a high-voltage range includes a substrate, an epitaxial layer, a plurality of first doped regions, a plurality of first trenches, a plurality of second trenches, a plurality of second doped regions, and a metal layer. The epitaxial layer is disposed on the substrate and used as a drain electrode. The plurality of first doped regions are disposed in the epitaxial layer. The plurality of first trenches are disposed on the plurality of doped regions in a spaced manner. Each of the first trenches has a first trench oxide layer and a first semiconductor layer which is connected to a source electrode. The plurality of second trenches are disposed between each of the first trenches in a spaced manner. Each of the second trenches has a second trench oxide layer and a second semiconductor layer which is connected to a gate electrode.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 19, 2019
    Inventors: HSIN-YU HSU, CHEN-HUANG WANG
  • Publication number: 20190280129
    Abstract: A high voltage Schottky diode applied to a high voltage range includes a substrate, an epitaxy layer, doped regions, trenches and a metal layer. The epitaxy layer is disposed on the substrate. The doped regions are disposed in the epitaxy layer. The trenches are disposed on the doped regions in a spaced manner and are in the epitaxy layer. Each trench has a trench oxide layer and a semiconductor layer. Each trench oxide layer is formed on a bottom of each trench and the side of each trench. Each semiconductor layer fills each trench. The metal layer is disposed on the epitaxy layer and become a Schottky contact with the epitaxy layer. Since each depth of the plurality of trenches is micrometer-sized and there is the configuration of the trench oxide layers, this high voltage Schottky diode can operate successfully in a high voltage range.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 12, 2019
    Inventors: HSIN-YU HSU, CHEN-HUANG WANG
  • Patent number: 8241978
    Abstract: A semiconductor device having integrated MOSFET and Schottky diode includes a substrate having a MOSFET region and a Schottky diode region defined thereon; a plurality of first trenches formed in the MOSFET region; and a plurality of second trenches formed in the Schottky diode region. The first trenches respectively including a first insulating layer formed over the sidewalls and bottom of the first trench and a first conductive layer filling the first trench serve as a trenched gate of the trench MOSFET. The second trenches respectively include a second insulating layer formed over the sidewalls and bottom of the second trench and a second conductive layer filling the second trench. A depth and a width of the second trenches are larger than that of the first trenches; and a thickness of the second insulating layer is larger than that of the first insulating layer.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: August 14, 2012
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Li-Cheng Lin, Hsin-Yu Hsu, Ho-Tai Chen, Jen-Hao Yeh, Guo-Liang Yang, Chia-Hui Chen, Shih-Chieh Hung
  • Patent number: 8049273
    Abstract: A power semiconductor device includes a backside metal layer, a substrate formed on the backside metal layer, a semiconductor layer formed on the substrate, and a frontside metal layer. The semiconductor layer includes a first trench structure including a gate oxide layer formed around a first trench with poly-Si implant, a second trench structure including a gate oxide layer formed around a second trench with poly-Si implant, a p-base region formed between the first trench structure and the second trench structure, a plurality of n+ source region formed on the p-base region and between the first trench structure and the second trench structure, a dielectric layer formed on the first trench structure, the second trench structure, and the plurality of n+ source region. The frontside metal layer is formed on the semiconductor layer and filling gaps formed between the plurality of n+ source region on the p-base region.
    Type: Grant
    Filed: February 15, 2009
    Date of Patent: November 1, 2011
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Ho-Tai Chen, Li-Cheng Lin, Jen-Hao Yeh, Hsin-Yen Chiu, Hsin-Yu Hsu, Shih-Chieh Hung
  • Patent number: 7867854
    Abstract: Wider and narrower trenches are formed in a substrate. A first gate material layer is deposited but not fully fills the wider trench. The first gate material layer in the wider trench and above the substrate original surface is removed by isotropic or anisotropic etching back. A first dopant layer is formed in the surface layer of the substrate at the original surface and the sidewall and bottom of the wider trench by tilt ion implantation. A second gate material layer is deposited to fully fill the trenches. The gate material layer above the original surface is removed by anisotropic etching back. A second dopant layer is formed in the surface layer of the substrate at the original surface by ion implantation. The dopants are driven-in to form a base in the substrate and a bottom-lightly-doped layer surrounding the bottom of the wider trench and adjacent to the base.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: January 11, 2011
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Hsin-Yu Hsu, Guo-Liang Yang, Jen-Hao Yeh
  • Publication number: 20100289075
    Abstract: A semiconductor device having integrated MOSFET and Schottky diode includes a substrate having a MOSFET region and a Schottky diode region defined thereon; a plurality of first trenches formed in the MOSFET region; and a plurality of second trenches formed in the Schottky diode region. The first trenches respectively including a first insulating layer formed over the sidewalls and bottom of the first trench and a first conductive layer filling the first trench serve as a trenched gate of the trench MOSFET. The second trenches respectively include a second insulating layer formed over the sidewalls and bottom of the second trench and a second conductive layer filling the second trench. A depth and a width of the second trenches are larger than that of the first trenches; and a thickness of the second insulating layer is larger than that of the first insulating layer.
    Type: Application
    Filed: August 6, 2009
    Publication date: November 18, 2010
    Inventors: Wei-Chieh Lin, Li-Cheng Lin, Hsin-Yu Hsu, Ho-Tai Chen, Jen-Hao Yeh, Guo-Liang Yang, Chia-Hui Chen, Shih-Chieh Hung
  • Publication number: 20100285646
    Abstract: Wider and narrower trenches are formed in a substrate. A first gate material layer is deposited but not fully fills the wider trench. The first gate material layer in the wider trench and above the substrate original surface is removed by isotropic or anisotropic etching back. A first dopant layer is formed in the surface layer of the substrate at the original surface and the sidewall and bottom of the wider trench by tilt ion implantation. A second gate material layer is deposited to fully fill the trenches. The gate material layer above the original surface is removed by anisotropic etching back. A second dopant layer is formed in the surface layer of the substrate at the original surface by ion implantation. The dopants are driven-in to form a base in the substrate and a bottom-lightly-doped layer surrounding the bottom of the wider trench and adjacent to the base.
    Type: Application
    Filed: July 23, 2009
    Publication date: November 11, 2010
    Inventors: Wei-Chieh Lin, Hsin-Yu Hsu, Guo-Liang Yang, Jen-Hao Yeh