Patents by Inventor Hsingjen Wann

Hsingjen Wann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220262924
    Abstract: A method of manufacturing a semiconductor device includes: providing a substrate comprising a surface; depositing a first dielectric layer and a second dielectric layer over the substrate; performing a first treatment by introducing a trap-repairing element on the first and second dielectric layers; forming a dummy gate electrode over the second dielectric layer; forming a gate spacer surrounding the dummy gate electrode; forming lightly-doped source/drain (LDD) regions in the substrate on two sides of the gate spacer; forming source/drain regions in the respective LDD regions; removing the dummy gate electrode to form a replacement gate; and forming an inter-layer dielectric (ILD) layer over the replacement gate and the source/drain regions.
    Type: Application
    Filed: May 9, 2022
    Publication date: August 18, 2022
    Inventors: CHUN HSIUNG TSAI, KUO-FENG YU, YU-MING LIN, CLEMENT HSINGJEN WANN
  • Patent number: 11404322
    Abstract: In a method of manufacturing a semiconductor device, a fin structure is formed by patterning a semiconductor layer, and an annealing operation is performed on the fin structure. In the patterning of the semiconductor layer, a damaged area is formed on a sidewall of the fin structure, and the annealing operation eliminates the damaged area.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: August 2, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun Hsiung Tsai, Yu-Ming Lin, Kuo-Feng Yu, Ming-Hsi Yeh, Shahaji B. More, Chandrashekhar Prakash Savant, Chih-Hsin Ko, Clement Hsingjen Wann
  • Patent number: 11393914
    Abstract: The present disclosure relates to a semiconductor device including a substrate having a top surface and a gate stack. The gate stack includes a gate dielectric layer on the substrate and a gate electrode on the gate dielectric layer. The semiconductor device also includes a multi-spacer structure. The multi-spacer includes a first spacer formed on a sidewall of the gate stack, a second spacer, and a third spacer. The second spacer includes a first portion formed on a sidewall of the first spacer and a second portion formed on the top surface of the substrate. The second portion of the second spacer has a thickness in a first direction that gradually decreases. The third spacer is formed on the second portion of the second spacer and on the top surface of the substrate. The semiconductor device further includes a source/drain region formed in the substrate, and a portion of the third spacer abuts the source/drain region and the second portion of the second spacer.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: July 19, 2022
    Inventors: Chun Hsiung Tsai, Clement Hsingjen Wann, Kuo-Feng Yu, Ming-Hsi Yeh, Shahaji B. More, Yu-Ming Lin
  • Patent number: 11362000
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: June 14, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann
  • Publication number: 20220148977
    Abstract: A semiconductor structure includes a substrate, a conductive feature over the substrate, a dielectric layer over the conductive feature and the substrate, and a structure disposed over and electrically connected to the conductive feature. The structure is partially surrounded by the dielectric layer and includes a first metal-containing layer and a second metal-contain layer surrounded by the first metal-containing layer. The first and the second metal-containing layers include different materials. A lower portion of the first metal-containing layer includes a transition metal or a transition metal nitride and an upper portion of the first metal-containing layer includes a transition metal fluoride or a transition metal chloride.
    Type: Application
    Filed: January 24, 2022
    Publication date: May 12, 2022
    Inventors: Ru-Shang Hsiao, Chun Hsiung Tsai, Clement Hsingjen Wann
  • Patent number: 11329139
    Abstract: A method of manufacturing a semiconductor device includes: providing a substrate comprising a surface; depositing a first dielectric layer and a second dielectric layer over the substrate; forming a dummy gate electrode over the second dielectric layer; forming a gate spacer surrounding the dummy gate electrode; forming lightly-doped source/drain (LDD) regions in the substrate on two sides of the gate spacer; forming source/drain regions in the respective LDD regions; removing the dummy gate electrode to form a replacement gate; forming an inter-layer dielectric (ILD) layer over the replacement gate and the source/drain regions; and performing a treatment by introducing a trap-repairing element into at least one of the gate spacer, the second dielectric layer, the surface and the LDD regions at a time before the forming of the source/drain regions or subsequent to the formation of the ILD layer.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: May 10, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chun Hsiung Tsai, Kuo-Feng Yu, Yu-Ming Lin, Clement Hsingjen Wann
  • Publication number: 20220102482
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a substrate, a deep trench capacitor (DTC) within the substrate, and an interconnect structure over the DTC and the substrate. The interconnect structure includes a seal ring structure in electrical contact with the substrate, a first conductive via in electrical contact with the DTC, and a first conductive line electrically coupling the seal ring structure to the first conductive via.
    Type: Application
    Filed: December 13, 2021
    Publication date: March 31, 2022
    Inventors: Chun-Hsiung Tsai, Shahaji B. More, Yu-Ming Lin, Clement Hsingjen Wann
  • Publication number: 20220045190
    Abstract: In a method of manufacturing a semiconductor device, a gate dielectric layer is formed over a channel region made of a semiconductor material, a first barrier layer is formed on the gate dielectric layer, a second barrier layer is formed on the first barrier layer, a first work function adjustment layer is formed on the second barrier layer, the first work function adjustment layer and the second barrier layer are removed. After the first work function adjustment layer and the second barrier layer are removed, a second work function adjustment layer is formed over the gate dielectric layer, and a metal gate electrode layer is formed over the second work function adjustment layer.
    Type: Application
    Filed: October 25, 2021
    Publication date: February 10, 2022
    Inventors: Yi-Jing LEE, Chih-Hsin KO, Clement Hsingjen WANN
  • Patent number: 11233140
    Abstract: In a method of manufacturing a semiconductor device including a field effect transistor (FET), a sacrificial region is formed in a substrate, and a trench is formed in the substrate. A part of the sacrificial region is exposed in the trench. A space is formed by at least partially etching the sacrificial region, an isolation insulating layer is formed in the trench and the space, and a gate structure and a source/drain region are formed. An air spacer is formed in the space under the source/drain region.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: January 25, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun Hsiung Tsai, Clement Hsingjen Wann, Kuo-Feng Yu, Yi-Tang Lin, Yu-Ming Lin
  • Patent number: 11232943
    Abstract: A method includes receiving a structure having a substrate, a conductive feature over the substrate, and a dielectric layer over the conductive feature. The method further includes forming a hole in the dielectric layer to expose the conductive feature; forming a first metal-containing layer on sidewalls of the hole; and forming a second metal-containing layer in the hole and surrounded by the first metal-containing layer. The first and the second metal-containing layers include different materials. The method further includes applying a first chemical to recess the dielectric layer, resulting in a top portion of the first and the second metal-containing layers protruding above the dielectric layer; and applying a second chemical having fluorine or chlorine to the top portion of the first metal-containing layer to convert the top portion of the first metal-containing layer into a metal fluoride or a metal chloride.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: January 25, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ru-Shang Hsiao, Chun Hsiung Tsai, Clement Hsingjen Wann
  • Patent number: 11201205
    Abstract: A semiconductor device and a method of forming the same are provided. The semiconductor device includes a substrate, a deep trench capacitor (DTC) within the substrate, and an interconnect structure over the DTC and the substrate. The interconnect structure includes a seal ring structure in electrical contact with the substrate, a first conductive via in electrical contact with the DTC, and a first conductive line electrically coupling the seal ring structure to the first conductive via.
    Type: Grant
    Filed: January 9, 2020
    Date of Patent: December 14, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Hsiung Tsai, Shahaji B. More, Yu-Ming Lin, Clement Hsingjen Wann
  • Publication number: 20210375694
    Abstract: Methods of manufacturing a semiconductor structure are provided. One of the methods includes the following operations. A substrate is received, and the substrate includes a first conductive region and a second conductive region. A first laser anneal is performed on the first conductive region to repair lattice damage. An amorphization is performed on the first conductive region and the second conductive region to enhance silicide formation to a desired phase transformation in the subsequent operations. A pre-silicide layer is formed on the substrate. A thermal anneal is performed to the substrate to form a silicide layer from the pre-silicide layer. A second laser anneal is performed on the first conductive region and the second conductive region.
    Type: Application
    Filed: August 9, 2021
    Publication date: December 2, 2021
    Inventors: CHUN HSIUNG TSAI, CHENG-YI PENG, CHING-HUA LEE, CLEMENT HSINGJEN WANN, YU-MING LIN
  • Publication number: 20210358799
    Abstract: The embodiments of mechanisms for doping wells of finFET devices described in this disclosure utilize depositing doped films to dope well regions. The mechanisms enable maintaining low dopant concentration in the channel regions next to the doped well regions. As a result, transistor performance can be greatly improved. The mechanisms involve depositing doped films prior to forming isolation structures for transistors. The dopants in the doped films are used to dope the well regions near fins. The isolation structures are filled with a flowable dielectric material, which is converted to silicon oxide with the usage of microwave anneal. The microwave anneal enables conversion of the flowable dielectric material to silicon oxide without causing dopant diffusion. Additional well implants may be performed to form deep wells. Microwave anneal(s) may be used to anneal defects in the substrate and fins.
    Type: Application
    Filed: July 26, 2021
    Publication date: November 18, 2021
    Inventors: Chun Hsiung Tsai, Yan-Ting Lin, Clement Hsingjen Wann
  • Patent number: 11177368
    Abstract: Methods of semiconductor arrangement formation are provided. A method of forming the semiconductor arrangement includes forming a first nucleus on a substrate in a trench or between dielectric pillars on the substrate. Forming the first nucleus includes applying a first source material beam at a first angle relative to a top surface of the substrate and concurrently applying a second source material beam at a second angle relative to the top surface of the substrate. A first semiconductor column is formed from the first nucleus by rotating the substrate while applying the first source material beam and the second source material beam. Forming the first semiconductor column in the trench or between the dielectric pillars using the first source material beam and the second source material beam restricts the formation of the first semiconductor column to a single direction.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: November 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Wei-Chieh Chen, Hao-Hsiung Lin, Shu-Han Chen, You-Ru Lin, Cheng-Hsien Wu, Chih-Hsin Ko, Clement Hsingjen Wann
  • Publication number: 20210351080
    Abstract: In a method of manufacturing a semiconductor device, a fin structure is formed by patterning a semiconductor layer, and an annealing operation is performed on the fin structure. In the patterning of the semiconductor layer, a damaged area is formed on a sidewall of the fin structure, and the annealing operation eliminates the damaged area.
    Type: Application
    Filed: February 4, 2021
    Publication date: November 11, 2021
    Inventors: Chun Hsiung TSAI, Yu-Ming LIN, Kuo-Feng YU, Ming-Hsi YEH, Shahaji B. MORE, Chandrashekhar Prakash SAVANT, Chih-Hsin KO, Clement Hsingjen WANN
  • Publication number: 20210342514
    Abstract: A method of operating an IC manufacturing system includes determining whether an n-type active region of a cell or a p-type active region of the cell is a first active region based on a timing critical path of the cell, positioning the first active region along a cell height direction in an IC layout diagram of a cell, the first active region having a first total number of fins extending in a direction perpendicular to the cell height direction. The method also includes positioning a second active region in the cell along the cell height direction, the second active region being the n-type or p-type opposite the n-type or p-type of the first active region and having a second total number of fins less than the first total number of fins and extending in the direction, and storing the IC layout diagram of the cell in a cell library.
    Type: Application
    Filed: July 15, 2021
    Publication date: November 4, 2021
    Inventors: Po-Hsiang HUANG, Fong-Yuan CHANG, Clement Hsingjen WANN, Chih-Hsin KO, Sheng-Hsiung CHEN, Li-Chun TIEN, Chia-Ming HSU
  • Patent number: 11158719
    Abstract: In a method of manufacturing a semiconductor device, a gate dielectric layer is formed over a channel region made of a semiconductor material, a first barrier layer is formed on the gate dielectric layer, a second barrier layer is formed on the first barrier layer, a first work function adjustment layer is formed on the second barrier layer, the first work function adjustment layer and the second barrier layer are removed. After the first work function adjustment layer and the second barrier layer are removed, a second work function adjustment layer is formed over the gate dielectric layer, and a metal gate electrode layer is formed over the second work function adjustment layer.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: October 26, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Jing Lee, Chih-Shin Ko, Clement Hsingjen Wann
  • Patent number: 11158725
    Abstract: The fin structure includes a first portion and a second, lower portion separated at a transition. The first portion has sidewalls that are substantially perpendicular to the major surface of the substrate. The lower portion has tapered sidewalls on opposite sides of the upper portion and a base having a second width larger than the first width.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: October 26, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Feng Yuan, Hung-Ming Chen, Tsung-Lin Lee, Chang-Yun Chang, Clement Hsingjen Wann
  • Patent number: 11133222
    Abstract: Methods of manufacturing a semiconductor structure are provided. One of the methods includes the following operations. A substrate is received, and the substrate includes a first transistor with a first conductive region and a second transistor with a second conductive region, wherein the first transistor and the second transistor have different conductive types. A first laser anneal is performed on the first conductive region to repair lattice damage. An amorphization is performed on the first conductive region and the second conductive region to enhance silicide formation to a desired phase transformation in the subsequent operations. A pre-silicide layer is formed on the substrate after the amorphization. A thermal anneal is performed to the substrate to form a silicide layer from the pre-silicide layer. A second laser anneal is performed on the first conductive region and the second conductive region after the formation of the pre-silicide layer.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: September 28, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chun Hsiung Tsai, Cheng-Yi Peng, Ching-Hua Lee, Clement Hsingjen Wann, Yu-Ming Lin
  • Publication number: 20210272849
    Abstract: A fin structure is on a substrate. The fin structure includes an epitaxial region having an upper surface and an under-surface. A contact structure on the epitaxial region includes an upper contact portion and a lower contact portion. The upper contact portion includes a metal layer over the upper surface and a barrier layer over the metal layer. The lower contact portion includes a metal-insulator-semiconductor (MIS) contact along the under-surface. The MIS contact includes a dielectric layer on the under-surface and the barrier layer on the dielectric layer.
    Type: Application
    Filed: May 17, 2021
    Publication date: September 2, 2021
    Inventors: Sung-Li Wang, Neng-Kuo Chen, Ding-Kang Shih, Meng-Chun Chang, Yi-An Lin, Gin-Chen Huang, Chen-Feng Hsu, Hau-Yu Lin, Chih-Hsin Ko, Sey-Ping Sun, Clement Hsingjen Wann