Patents by Inventor Hsu-Kun Wang

Hsu-Kun Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7811754
    Abstract: Methods and apparatus for detecting single nucleotide polymorphisms in genes of interest are disclosed. A plurality of probes is immobilized on a planar waveguide. The probes comprise sequences complementary to a wildtype sequence of the gene of interest and complementary to a sequence of a known SNP in the gene of interest. A fluorescently-labeled analyte is flowed over the planar waveguide. The binding between the labeled analyte and each of the probes causes a change in the fluorescence signal. The SNP is detected by comparing the hybridization kinetics of the analyte with each of the probes. A method of detecting single nucleotide polymorphisms in a gene of interest by sequencing by hybridization is also disclosed.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: October 12, 2010
    Assignee: University of Utah Research Foundation
    Inventors: James N. Herron, Samuel Tolley, Hsu-Kun Wang
  • Patent number: 7537734
    Abstract: A composite waveguide for evanescent sensing in fluorescent binding assays comprising a substrate layer having one or more thin-film waveguide channels deposited thereon. Binding molecules having the property of binding with specificity to an analyte are immobilized on the surface of the thin-film channels. In preferred embodiments, the composite waveguide includes integral light input coupling means adapted to the thin-film channels. Light coupling means may include a grating etched into the substrate prior to deposition of the thin film, or a waveguide coupler affixed to the upper surface of the thin film. The waveguide coupler has an input waveguide of high refractive index which receives the laser light through one end, propagating it by total internal reflection. Propagated light is coupled evanescently into the thin film across a spacer layer of precise thickness with a lower index of refraction than that of the input waveguide or the thin-film waveguide.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: May 26, 2009
    Assignee: University of Utah Research Foundation
    Inventors: W. Monty Reichert, James N. Herron, Douglas A. Christensen, Hsu-Kun Wang
  • Publication number: 20060228713
    Abstract: Methods and apparatus for detecting single nucleotide polymorphisms in genes of interest are disclosed. A plurality of probes is immobilized on a planar waveguide. The probes comprise sequences complementary to a wildtype sequence of the gene of interest and complementary to a sequence of a known SNP in the gene of interest. A fluorescently-labeled analyte is flowed over the planar waveguide. The binding between the labeled analyte and each of the probes causes a change in the fluorescence signal. The SNP is detected by comparing the hybridization kinetics of the analyte with each of the probes. A method of detecting single nucleotide polymorphisms in a gene of interest by sequencing by hybridization is also disclosed.
    Type: Application
    Filed: September 9, 2004
    Publication date: October 12, 2006
    Inventors: James Herron, Samuel Tolley, Hsu-Kun Wang
  • Patent number: 7022515
    Abstract: Methods and apparatus for evanescent light fluoroimmunoassays are disclosed. The apparatus employs a planar waveguide and optionally has multi-well features and improved evanescent field intensity. The preferred biosensor and assay method have the capture molecules immobilized to the waveguide surface by site-specific coupling chemistry. Additionally, the coatings used to immobilize the capture molecules provide reduced non-specific protein adsorption.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: April 4, 2006
    Assignee: University of Utah Research Foundation
    Inventors: James N. Herron, Douglas A. Christensen, Karin D. Caldwell, Vera Janatová, Shao-Chie Huang, Hsu-Kun Wang
  • Patent number: 6979567
    Abstract: Methods and apparatus for evanescent light fluoroimmunoassays are disclosed. The apparatus employs a planar waveguide with an integral semicylindrical lens, and has multi-analyte features and calibration features, along with improved evanescent field intensity. A preferred embodiment of the biosensor and assay method has patches of capture molecules, each specific for a different analyte disposed adjacently within a single reservoir. The capture molecules are immobilized to the patches on the waveguide surface by site-specific coupling of thiol groups on the capture molecules to photo-affinity crosslinkers, which in turn are coupled to the waveguide surface or to a nonspecific binding-resistant coating on the surface. The patches of different antibodies are produced by selectively irradiating a portion of the waveguide surface during the process of coupling the photo-affinity crosslinkers, the selective irradiation involving a mask, a laser light source, or the like.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: December 27, 2005
    Assignee: BioCentrex, LLC
    Inventors: James N. Herron, Douglas A. Christensen, Hsu-Kun Wang, Karin Caldwell, Vera Janatová, Shao-Chie Huang
  • Patent number: 6911344
    Abstract: A step-gradient composite waveguide for evanescent sensing in fluorescent binding assays comprises a thick substrate layer having one or more thin film waveguide channels deposited thereon. In one embodiment, the substrate is silicon dioxide and the thin film is silicon oxynitride. Specific binding molecules having the property of binding with specificity to an analyte are immobilized on the surface of the thin film channels. In preferred embodiments, the composite waveguide further includes light input coupling means integrally adapted to the thin film channels. Such light coupling means can be a grating etched into the substrate prior to deposition of the thin film, or a waveguide coupler affixed to the upper surface of the thin film. The waveguide coupler has a thick input waveguide of high refractive index which receives the laser light through one end and propagates it by total internal reflection.
    Type: Grant
    Filed: November 3, 1998
    Date of Patent: June 28, 2005
    Assignee: BioCentrex, LLC
    Inventors: W. Monty Reichert, James N. Herron, Douglas A. Christensen, Hsu-Kun Wang, Jacob D. Durtschi
  • Publication number: 20020160534
    Abstract: Methods and apparatus for evanescent light fluoroimmunoassays are disclosed. The apparatus employs a planar waveguide and optionally has multi-well features and improved evanescent field intensity. The preferred biosensor and assay method have the capture molecules immobilized to the waveguide surface by site-specific coupling chemistry. Additionally, the coatings used to immobilize the capture molecules provide reduced non-specific protein adsorption.
    Type: Application
    Filed: October 5, 2001
    Publication date: October 31, 2002
    Inventors: James N. Herron, Douglas A. Christensen, Karin D. Caldwell, Vera Janatova, Shao-Chie Huang, Hsu-Kun Wang
  • Publication number: 20020160535
    Abstract: Methods and apparatus for evanescent light fluoroimmunoassays are disclosed. The apparatus employs a planar waveguide with an integral semi-cylindrical lens, and has multi-analyte features and calibration features, along with improved evanescent field intensity. A preferred embodiment of the biosensor and assay method have patches of capture molecules each specific for a different analyte disposed adjacent within a single reservoir. The capture molecules are immobilized to the patches on the waveguide surface by site-specific coupling of thiol groups on the capture molecules to photo-affinity crosslinkers which in turn are coupled to the waveguide surface or to a non-specific-binding-resistant coating on the surface. The patches of different antibodies are produced by selectively irradiating a portion of the waveguide surface during the process of coupling the photo-affinity crosslinkers the selective irradiation involving a mask, a laser light source, or the like.
    Type: Application
    Filed: November 13, 2001
    Publication date: October 31, 2002
    Inventors: James N. Herron, Douglas A. Christensen, Hsu-Kun Wang, Karin Caldwell, Vera Janatova, Shao-Chie Huang
  • Publication number: 20020034457
    Abstract: A composite waveguide for evanescent sensing in fluorescent binding assays comprising a substrate layer having one or more thin film waveguide channels deposited thereon. Binding molecules having the property of binding with specificity to an analyte are immobilized on the surface of the thin film channels. In preferred embodiments, the composite waveguide includes integral light input coupling means adapted to the thin film channels. Light coupling means may include a grating etched into the substrate prior to deposition of the thin film, or a waveguide coupler affixed to the upper surface of the thin film. The waveguide coupler has an input waveguide of high refractive index which receives the laser light through one end, propagating it by total internal reflection. Propagated light is coupled evanescently into the thin film across a spacer layer of precise thickness with a lower index of refraction than the input waveguide or the thin-film waveguide.
    Type: Application
    Filed: October 10, 2001
    Publication date: March 21, 2002
    Inventors: W. Monty Reichert, James N. Herron, Douglas A. Christensen, Hsu-Kun Wang
  • Patent number: 6350413
    Abstract: A step-gradient composite waveguide for evanescent sensing in fluorescent binding assays comprises a thick substrate layer having one or more thin film waveguide channels deposited thereon. In one embodiment, the substrate is silicon dioxide and the thin film is silicon oxynitride. Specific binding molecules having the property of binding with specificity to an analyte are immobilized on the surface of the thin film channels. In preferred embodiments, the composite waveguide further includes light input coupling means integrally adapted to the thin film channels. Such light coupling means can be a grating etched into the substrate prior to deposition of the thin film, or a waveguide coupler affixed to the upper surface of the thin film. The waveguide coupler has a thick input waveguide of high refractive index which receives the laser light through one end and propagates it by total internal reflection.
    Type: Grant
    Filed: October 5, 1999
    Date of Patent: February 26, 2002
    Assignee: University of Utah Research Foundation
    Inventors: W. Monty Reichert, James N. Herron, Douglas A. Christensen, Hsu-Kun Wang
  • Patent number: 6340598
    Abstract: Methods and apparatus for evanescent light fluoroimmunoassays are disclosed. The apparatus employs a planar waveguide and optionally has multi-well features and improved evanescent field intensity. The preferred biosensor and assay method have the capture molecules immobilized to the waveguide surface by site-specific coupling chemistry. Additionally, the coatings used to immobilize the capture molecules provide reduced non-specific protein adsorption.
    Type: Grant
    Filed: December 8, 1998
    Date of Patent: January 22, 2002
    Assignee: University of Utah Research Foundation
    Inventors: James N. Herron, Douglas A. Christensen, Karin D. Caldwell, Vera Janatová, Shao-Chie Huang, Hsu-Kun Wang
  • Patent number: 6316274
    Abstract: Methods and apparatus for evanescent light fluoroimmunoassays are disclosed. The apparatus employs a planar waveguide with an integral semi-cylindrical lens, and has multi-analyte features and calibration features, along with improved evanescent field intensity. A preferred embodiment of the biosensor and assay method have patches of capture molecules each specific for a different analyte disposed adjacent within a single reservoir. The capture molecules are immobilized to the patches on the waveguide surface by site-specific coupling of thiol groups on the capture molecules to photo-affinity crosslinkers which in turn are coupled to the waveguide surface or to a non-specific-binding-resistant coating on the surface. The patches of different antibodies are produced by selectively irradiating a portion of the waveguide surface during the process of coupling the photo-affinity crosslinkers the selective irradiation involving a mask, a laser light source, or the like.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: November 13, 2001
    Assignee: University of Utah Research Foundation
    Inventors: James N. Herron, Douglas A. Christensen, Hsu-Kun Wang, Karin Caldwell, Vera Janatová, Shao-Chie Huang
  • Patent number: 5961924
    Abstract: A step-gradient composite waveguide for evanescent sensing in fluorescent binding assays comprises a thick substrate layer having one or more thin film waveguide channels deposited thereon. In one embodiment, the substrate is silicon dioxide and the thin film is silicon oxynitride. Specific binding molecules having the property of binding with specificity to an analyte are immobilized on the surface of the thin film channels. In preferred embodiments, the composite waveguide further includes light input coupling means integrally adapted to the thin film channels. Such light coupling means can be a grating etched into the substrate prior to deposition of the thin film, or a waveguide coupler affixed to the upper surface of the thin film. The waveguide coupler has a thick input waveguide of high refractive index which receives the laser light through one end and propagates it by total internal reflection.
    Type: Grant
    Filed: October 31, 1997
    Date of Patent: October 5, 1999
    Assignee: University of Utah Research Foundation
    Inventors: W. Monty Reichert, James N. Herron, Douglas A. Christensen, Hsu-Kun Wang
  • Patent number: 5919712
    Abstract: Methods and apparatus for evanescent light fluoroimmunoassays are disclosed. The apparatus employs a planar waveguide with an integral semi-cylindrical lens, and has multi-analyte features and calibration features, along with improved evanescent field intensity. A preferred embodiment of the biosensor and assay method have patches of capture molecules each specific for a different analyte disposed adjacent within a single reservoir. The capture molecules are immobilized to the patches on the waveguide surface by site-specific coupling of thiol groups on the capture molecules to photo-affinity crosslinkers which in turn are coupled to the waveguide surface or to a non-specific-binding-resistant coating on the surface. The patches of different antibodies are produced by selectively irradiating a portion of the waveguide surface during the process of coupling the photo-affinity crosslinkers the selective irradiation involving a mask, a laser light source, or the like.
    Type: Grant
    Filed: November 13, 1996
    Date of Patent: July 6, 1999
    Assignee: University of Utah Research Foundation
    Inventors: James N. Herron, Douglas A. Christensen, Hsu-Kun Wang, Karin D. Caldwell, Vera Janatova, Shao-Chie Huang
  • Patent number: 5846842
    Abstract: Methods and apparatus for evanescent light fluoroimmunoassays are disclosed. The apparatus employs a planar waveguide and optionally has multi-well features and improved evanescent field intensity. The preferred biosensor and assay method have the capture molecules immobilized to the waveguide surface by site-specific coupling chemistry. Additionally, the coatings used to immobilize the capture molecules provide reduced non-specific protein adsorption.
    Type: Grant
    Filed: April 30, 1996
    Date of Patent: December 8, 1998
    Assignee: University of Utah Research Foundation
    Inventors: James N. Herron, Douglas A. Christensen, Karin D. Caldwell, Vera Janatova, Shao-Chie Huang, Hsu-Kun Wang
  • Patent number: 5832165
    Abstract: A step-gradient composite waveguide for evanescent sensing in fluorescent binding assays comprises a thick substrate layer having one or more thin film waveguide channels deposited thereon. In one embodiment, the substrate is silicon dioxide and the thin film is silicon oxynitride. Specific binding molecules having the property of binding with specificity to an analyte are immobilized on the surface of the thin film channels. In preferred embodiments, the composite waveguide further includes light input coupling means integrally adapted to the thin film channels. Such light coupling means can be a grating etched into the substrate prior to deposition of the thin film, or a waveguide coupler affixed to the upper surface of the thin film. The waveguide coupler has a thick input waveguide of high refractive index which receives the laser light through one end and propagates it by total internal reflection.
    Type: Grant
    Filed: August 28, 1996
    Date of Patent: November 3, 1998
    Assignee: University of Utah Research Foundation
    Inventors: W. Monty Reichert, James N. Herron, Douglas A. Christensen, Hsu-Kun Wang
  • Patent number: 5814565
    Abstract: A step-gradient composite waveguide for evanescent sensing in fluorescent binding assays comprises a thick substrate layer having one or more thin film waveguide channels deposited thereon. In one embodiment, the substrate is silicon dioxide and the thin film is silicon oxynitride. Specific binding molecules having the property of binding with specificity to an analyte are immobilized on the surface of the thin film channels. In preferred embodiments, the composite waveguide further includes light input coupling means integrally adapted to the thin film channels. Such light coupling means can be a grating etched into the substrate prior to deposition of the thin film, or a waveguide coupler affixed to the upper surface of the thin film. The waveguide coupler has a thick input waveguide of high refractive index which receives the laser light through one end and propagates it by total internal reflection.
    Type: Grant
    Filed: February 23, 1995
    Date of Patent: September 29, 1998
    Assignee: University of Utah Research Foundation
    Inventors: W. Monty Reichert, James N. Herron, Douglas A. Christensen, Hsu-Kun Wang
  • Patent number: 5677196
    Abstract: Methods and apparatus for evanescent light fluoroimmunoassays are disclosed. The apparatus employs a planar waveguide with an integral semi-cylindrical lens, and has multi-analyte features and calibration features, along with improved evanescent field intensity. A preferred embodiment of the biosensor and assay method have patches of capture molecules each specific for a different analyte disposed adjacent within a single reservoir. The capture molecules are immobilized to the patches on the waveguide surface by site-specific coupling of thiol groups on the capture molecules to photo-affinity crosslinkers which in turn are coupled to the waveguide surface or to a non-specific-binding-resistant coating on the surface. The patches of different antibodies are produced by selectively irradiating a portion of the waveguide surface during the process of coupling the photo-affinity crosslinkers the selective irradiation involving a mask, a laser light source, or the like.
    Type: Grant
    Filed: June 22, 1994
    Date of Patent: October 14, 1997
    Assignee: University of Utah Research Foundation
    Inventors: James N. Herron, Douglas A. Christensen, Hsu-Kun Wang, Karin D. Caldwell, Vera Janatova, Shao-Chie Huang
  • Patent number: 5512492
    Abstract: Methods and apparatus for evanescent light fluoroimmunoassays are disclosed. The apparatus employs a planar waveguide and optionally has multi-well features and improved evanescent field intensity. The preferred biosensor and assay method have the capture molecules immobilized to the waveguide surface by site-specific coupling chemistry. Additionally, the coatings used to immobilize the capture molecules provide reduced non-specific protein adsorption.
    Type: Grant
    Filed: May 18, 1993
    Date of Patent: April 30, 1996
    Assignee: University of Utah Research Foundation
    Inventors: James N. Herron, Douglas A. Christensen, Karin D. Caldwell, Vera Janatova, Shao-Chie Huang, Hsu-Kun Wang