Patents by Inventor Huan-Hung Sheng

Huan-Hung Sheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230103045
    Abstract: Apparatus and method for treating a substrate, for example texturing a substrate. In some embodiments, a masking material is applied to a surface of the substrate in a predetermined pattern, the surface thereafter contacted with an etchant that removes the masking material. Contacting the surface with the etchant produces multiple co-located textures. In other embodiments, the masking step can be eliminated, and the etchant is applied in a predetermined pattern to produce multiple co-located textures. In still other embodiments, the substrate has a chemical composition, and the substrate is exposed to a leachant that leaches at least one constituent of the chemical composition to produce a substrate with a varying chemical composition at the substrate surface.
    Type: Application
    Filed: January 5, 2021
    Publication date: March 30, 2023
    Inventors: Gabriel Pierce Agnello, Joy Banerjee, Aize Li, Robert George Manley, Huan-Hung Sheng, Siva Venkatachalam
  • Patent number: 11591257
    Abstract: A multi-layer and method of making the same are provided. The multi-layer, such as a sensor, can include a high strength glass overlay and a lamination layer on a substrate layer. The overlay can be less than 250 micrometers thick and have at least one tempered surface incorporating a surface compression layer of at least 5 micrometers deep and a surface compressive stress of at least 200 MPa. The overlay can exhibit a puncture factor of at least 3000 N/?m2 at B10 (10th percentile of the probability distribution of failure) in a multi-layer structure, an apparent thickness of less than 0.014 mm, and a pencil hardness greater than 6H. The method can include ion-exchange tempering at least one major surface of a glass sheet, light etching the major surface to remove flaws and laminating the glass sheet on the tempered and lightly etched major surface to a substrate layer.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: February 28, 2023
    Assignee: Corning Incorporated
    Inventors: Satish Chandra Chaparala, Kristen Lorraine Eckart, Kurt Edward Gerber, Ming-Huang Huang, Nagaraja Shashidhar, Huan-Hung Sheng, Michael Lesley Sorensen, Ananthanarayanan Subramanian
  • Publication number: 20200031710
    Abstract: A multi-layer and method of making the same are provided. The multi-layer, such as a sensor, can include a high strength glass overlay and a lamination layer on a substrate layer. The overlay can be less than 250 micrometers thick and have at least one tempered surface incorporating a surface compression layer of at least 5 micrometers deep and a surface compressive stress of at least 200 MPa. The overlay can exhibit a puncture factor of at least 3000 N/?m2 at B10 (10thpercentile of the probability distribution of failure) in a multi-layer structure, an apparent thickness of less than 0.014 mm, and a pencil hardness greater than 6H. The method can include ion-exchange tempering at least one major surface of a glass sheet, light etching the major surface to remove flaws and laminating the glass sheet on the tempered and lightly etched major surface to a substrate layer.
    Type: Application
    Filed: April 4, 2018
    Publication date: January 30, 2020
    Inventors: Satish Chandra Chaparala, Kristen Lorraine Eckart, Kurt Edward Gerber, Ming-Huang Huang, Nagaraja Shashidhar, Huan-Hung Sheng, Michael Lesley Sorensen, Ananthanarayanan Subramanian
  • Patent number: 9925743
    Abstract: A process for producing glass laminates including at least one sheet of glass having a thickness not exceeding 1.0 mm with reduced optical distortion and shape consistency. A pre-laminate stack of two glass sheets and a polymer interlayer are stacked between two buffer plates that are formed nominally to the desired shape of the laminate mold. The pre-laminate stack is held between the buffer plates while a vacuum is applied to the edges of the pre-laminate stack and the stack is heated to a temperature somewhat above the softening temperature of the interlayer to de-air and tack the interlayer to the two glass sheets forming the desired shaped laminate with reduced optical distortion.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: March 27, 2018
    Assignee: CORNING INCORPORATED
    Inventors: William Keith Fisher, Mark Stephen Friske, Paul George Rickerl, Huan-Hung Sheng
  • Publication number: 20160250825
    Abstract: A laminate structure having a first glass layer, a second glass layer, and at least one polymer interlayer intermediate the first and second glass layers. The polymer interlayer can include a first region having a first modulus of elasticity and a second region having a second modulus of elasticity. The second modulus of elasticity can be greater than the first modulus of elasticity. In some embodiments, the first region can be a central region of the polymer interlayer and the second region can be a peripheral region of the polymer interlayer encompassing the first region.
    Type: Application
    Filed: October 6, 2014
    Publication date: September 1, 2016
    Inventors: Thomas Michael Cleary, Gordon Charles Brown, William Keith Fisher, Mark Stephen Friske, Paul George Rickeert, Huan-Hung Sheng, Paul John Shustack
  • Publication number: 20150158277
    Abstract: A process for producing glass laminates including at least one sheet of glass having a thickness not exceeding 1.0 mm with reduced optical distortion and shape consistency. A pre-laminate stack of two glass sheets and a polymer interlayer are stacked between two buffer plates that are formed nominally to the desired shape of the laminate mold. The pre-laminate stack is held between the buffer plates while a vacuum is applied to the edges of the pre-laminate stack and the stack is heated to a temperature somewhat above the softening temperature of the interlayer to de-air and tack the interlayer to the two glass sheets forming the desired shaped laminate with reduced optical distortion.
    Type: Application
    Filed: June 12, 2013
    Publication date: June 11, 2015
    Inventors: William Keith Fisher, Mark Stephen Friske, Paul George Rickerl, Huan-Hung Sheng
  • Publication number: 20150122406
    Abstract: A process using a vacuum ring or vacuum bag to produce glass laminates with improved optical distortion and shape consistency using thin glass having a thickness not exceeding 1.0 by using a soak temperatures not exceeding 120° C. or not exceeding 100° C. and a vacuum not exceed about ?0.6 bar. One or more assembled stacks of two glass sheets and a polymer interlayer being laminated may be stacked on a single reference mold and processed simultaneously in a single vacuum bag or vacuum ring. One more thin glass sheets may be placed on top the assembled stack(s) on the reference mold to protect the assembled stack from irregular forces applied by the vacuum bag or the vacuum ring.
    Type: Application
    Filed: June 6, 2013
    Publication date: May 7, 2015
    Inventors: William Keith Fisher, Michael John Moore, Steven Luther Moyer, Huan-Hung Sheng, Larry Gene Smith
  • Patent number: 8640591
    Abstract: The disclosure is directed to a transparent armor laminate having a glass, glass-ceramic or ceramic strike face layer, one or a plurality of glass, glass-ceramic (“GC”), ceramic (“C”) or polymeric (“P”) backing layer behind the strike face layer, one or a plurality of spall catcher (“SC”) layers behind the backing layer(s), and a thin cover glass layer laminated to the strike face, the thin layer being the first layer to be impacted by any incoming projectile or debris. The cover glass has a thickness ?3 mm. In another embodiment the cover glass thickness is ?1 mm. Additionally, a defrosting/defogging element is laminated between the cover glass and the strike face.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: February 4, 2014
    Assignees: Corning Incorporated, The United States of America as Represented by the Secretary of the Army
    Inventors: Leonard Charles Dabich, II, Huan-Hung Sheng, Steven Alvin Tietje, Jian-Zhi Jay Zhang, Parimal J. Patel
  • Patent number: 8591600
    Abstract: A method for fabricating electrode structures within a honeycomb substrate having a plurality of elongated channels is provided that is particularly adaptable for producing an ultracapacitor. In this method, the nozzle of a co-extrusion device simultaneously feeds a current collector along a central axis of one of the channels while simultaneously injecting a paste containing an electrode material so that the interior of the channel becomes completely filled with electrode paste at the same rate that the current collector is fed. Such co-extrusion as performed simultaneously at both sides of the ceramic substrate to rapidly form electrode structures within substantially all the channels of the substrate. The resulting ultracapacitor is capable of storing large amounts of electrical energy per unit volume in a structure which is relatively quick and easy to manufacture.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: November 26, 2013
    Assignee: Corning Incorporated
    Inventors: William James Miller, Huan-Hung Sheng
  • Patent number: 8456801
    Abstract: A hybrid capacitor includes an electrically non-conductive rigid or semi-rigid porous honeycomb structure having cells extending along a common direction, the cells having a plurality of cross-sectional shapes. The honeycomb structure is desirably formed of a material that is stable at temperatures of 300° or more, such that high temperature processing can be used to help ensure high purity of the final product. The material of the structure may desirably be an oxide or non-oxide ceramic, such as cordierite, silicon nitride, alumina, aluminum titanate, zircon, glass, or glass-ceramic. The plurality of shapes of the cells includes larger shapes in which cells are disposed non-galvanic electrodes, with galvanic electrodes disposed in cells of other shapes.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: June 4, 2013
    Assignee: Corning Incorporated
    Inventors: Roy Joseph Bourcier, Kishor Purushottam Gadkaree, Mallanagouda Dyamanagouda Patil, Huan-Hung Sheng, Mark J. Soulliere
  • Publication number: 20120174761
    Abstract: The disclosure is directed to a transparent armor laminate having a glass, glass-ceramic or ceramic strike face layer, one or a plurality of glass, glass-ceramic (“GC”), ceramic (“C”) or polymeric (“P”) backing layer behind the strike face layer, one or a plurality of spall catcher (“SC”) layers behind the backing layer(s), and a thin cover glass layer laminated to the strike face, the thin layer being the first layer to be impacted by any incoming projectile or debris. The cover glass has a thickness ?3 mm. In another embodiment the cover glass thickness is ?1 mm. Additionally, a defrosting/defogging element is laminated between the cover glass and the strike face.
    Type: Application
    Filed: June 27, 2011
    Publication date: July 12, 2012
    Inventors: Leonard Charles Dabich, II, Huan-Hung Sheng, Steven Alvin Tietje, Jian-Zhi Jay Zhang, Parimal J. Patel
  • Patent number: 7903389
    Abstract: An ultracapacitor or hybrid capacitor includes an electrically non-conductive rigid or semi-rigid porous honeycomb separator structure having cells extending along a common direction and supporting current collector structure(s) thereon. The current collector structure may be porous and extend continuously on all inner surfaces of a cell of the honeycomb structure, or may extend along the common direction on separate portions of the inner surfaces of a cell. The material may desirably be an oxide or non-oxide ceramic, such as cordierite, silicon nitride, aluminum titanate, alumina, zircon, glass, or glass-ceramic.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: March 8, 2011
    Assignee: Corning Incorporated
    Inventors: Roy Joseph Bourcier, Kishor Purushottam Gadkaree, Mallanagouda Dyamanagouda Patil, Huan-Hung Sheng, Mark J Soulliere
  • Patent number: 7859827
    Abstract: An ultracapacitor or hybrid capacitor includes an electrically non-conductive rigid or semi-rigid porous honeycomb structure (12) having cells extending along a common direction and having an average density per unit area within in a plane perpendicular to the common direction exceeding 15.5 per square centimeter, desirably formed of a material that is stable at temperatures of 300° or more, such that high temperatures processing can be used to help ensure high purity of the final product. The material may desirably be an oxide or non-oxide ceramic, such as cordierite, silicon nitride, alumina, aluminum titanate, zircon, glass, or glass-ceramic.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: December 28, 2010
    Assignee: Corning Incorporated
    Inventors: Roy Joseph Bourcier, Kishor Purushottam Gadkaree, Mallanagouda Dyamanagouda Patil, Huan-Hung Sheng, Mark J Soulliere
  • Publication number: 20100275767
    Abstract: A transparent armor laminate system includes a plurality of sub-stacks separated by an interlayer. The sub-stacks include a plurality of layers including a glass ceramic front strike-face layer, a backing layer comprising a spall-resistant material, and at least one glass layer laminated between the strike-face and backing layers. The interlayer isolates cracks between sub-stacks, and may include an isolating material such as a polymer, gas, or liquid. The laminate system offers improved performance with reduced weight over conventional all-glass or all-glass-ceramic transparent armors.
    Type: Application
    Filed: August 27, 2008
    Publication date: November 4, 2010
    Inventors: Linda Ruth Pinckney, Huan-Hung Sheng, Steven Alvin Tietje, Jian-Zhi Jay Zhang
  • Patent number: 7715675
    Abstract: The present invention relates to optical fiber coating systems capable of providing a high degree of microbend protection to an optical fiber, and an optical fiber coated therewith. According to one embodiment of the invention, an optical fiber coating system includes a primary coating and a secondary coating, wherein when a ribbon having twelve large effective area optical fibers coated with the coating system is subjected to the ribbon optical performance test at a wavelength of 1550 nm, the average change in attenuation is about 0.020 dB/km or less.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: May 11, 2010
    Assignee: Corning Incorporated
    Inventors: Michelle D Fabian, Edward J Fewkes, Huan-Hung Sheng, Michael J Winningham
  • Publication number: 20100018053
    Abstract: A method for fabricating electrode structures within a honeycomb substrate having a plurality of elongated channels is provided that is particularly adaptable for producing an ultracapacitor. In this method, the nozzle of a co-extrusion device simultaneously feeds a current collector along a central axis of one of the channels while simultaneously injecting a paste containing an electrode material so that the interior of the channel becomes completely filled with electrode paste at the same rate that the current collector is fed. Such co-extrusion as performed simultaneously at both sides of the ceramic substrate to rapidly form electrode structures within substantially all the channels of the substrate. The resulting ultracapacitor is capable of storing large amounts of electrical energy per unit volume in a structure which is relatively quick and easy to manufacture.
    Type: Application
    Filed: October 1, 2009
    Publication date: January 28, 2010
    Inventors: William James Miller, Huan-Hung Sheng
  • Publication number: 20090303663
    Abstract: An hybrid capacitor includes an electrically non-conductive rigid or semi-rigid porous honeycomb structure having cells extending along a common direction, the cells having a plurality of cross-sectional shapes. The honeycomb structure is desirably formed of a material that is stable at temperatures of 3000 or more, such that high temperature processing can be used to help ensure high purity of the final product. The material of the structure may desirably be an oxide or non-oxide ceramic, such as cordierite, silicon nitride, alumina, aluminum titanate, zircon, glass, or glass-ceramic. The plurality of shapes of the cells includes larger shapes in which cells are disposed non-galvanic electrodes, with galvanic electrodes disposed in cells of other shapes.
    Type: Application
    Filed: July 24, 2006
    Publication date: December 10, 2009
    Inventors: Roy Joseph Bourcier, Kishor Purushottam Gadkaree, Mallanagouda Dyamanagouda Patil, Huan-Hung Sheng, Mark J. Soulliere
  • Publication number: 20090185328
    Abstract: An ultracapacitor or hybrid capacitor includes an electrically non-conductive rigid or semi-rigid porous honeycomb separator structure having cells extending along a common direction and supporting current collector structure(s) thereon. The current collector structure may be porous and extend continuously on all inner surfaces of a cell of the honeycomb structure, or may extend along the common direction on separate portions of the inner surfaces of a cell. The honeycomb structure desirably formed of a material that is stable at temperatures of 300° or more, such that high temperature processing can be used to help ensure high purity of the final product. The material may desirably be an oxide or non-oxide ceramic, such as cordierite, silicon nitride, or aluminum titanate. The cells desirably have an average density per unit area within in a plane perpendicular to the common direction of more than 15.5 per square centimeter.
    Type: Application
    Filed: May 26, 2006
    Publication date: July 23, 2009
    Inventors: Roy Joseph Bourcier, Kishor Purushottam Gadkaree, Mallanagouda Dyamanagouda Patil, Huan-Hung Sheng, Mark J. Soulliere
  • Publication number: 20090100872
    Abstract: A method for laminating glass, glass-ceramic, or ceramic layers. The method comprises providing a first layer of glass, glass-ceramic, or ceramic, wherein the glass, glass-ceramic, or ceramic of the first layer is electromagnetic radiation-sensitive or has an electromagnetic radiation susceptor disposed on it; stacking a second layer of glass, glass-ceramic, or ceramic on the first layer; and irradiating the stack with electromagnetic radiation to laminate the first and second layers.
    Type: Application
    Filed: October 17, 2007
    Publication date: April 23, 2009
    Inventors: Daniel Warren Hawtof, Michael Yoshiya Nishimoto, Huan-Hung Sheng, Gary Graham Squier
  • Publication number: 20090021890
    Abstract: An ultracapacitor or hybrid capacitor includes an electrically non-conductive rigid or semi-rigid porous honeycomb structure (12) having cells extending along a common direction and having an average density per unit area within in a plane perpendicular to the common direction exceeding 15.5 per square centimeter, desirably formed of a material that is stable at temperatures of 300° or more, such that high temperatures processing can be used to help ensure high purity of the final product. The material may desirably be an oxide or non-oxide ceramic, such as cordierite, silicon nitride, alumina, aluminum titanate, zircon, glass, or glass-ceramic.
    Type: Application
    Filed: May 26, 2006
    Publication date: January 22, 2009
    Inventors: Roy Joseph Bourcier, Kishor Purushottam Gadkaree, Mallanagouda Dyamanagouda Patil, Huan-Hung Sheng, Mark J. Soulliere