Patents by Inventor Hugo E. Rothuizen

Hugo E. Rothuizen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200126596
    Abstract: An apparatus, according to one embodiment, includes a module having an array of transducers, and a thermoelectric cooling element positioned proximate to the array of transducers. An apparatus, according to one embodiment, includes a module having an array of transducers, a thermoelectric cooling element positioned proximate to the array of transducers, and a heating element positioned proximate to the array of transducers. A method of maintaining a span of an array of transducers of module to a specification, according to one embodiment, includes determining whether the span of the array of transducers in a module is different than a target based on a specification. In response to determining the span is greater than the target, a control signal is applied to a thermoelectric cooling element positioned proximate to the span of the array of transducers for contracting the span of the array of transducers toward the target.
    Type: Application
    Filed: October 18, 2018
    Publication date: April 23, 2020
    Inventors: Robert G. Biskeborn, Hugo E. Rothuizen
  • Patent number: 10580442
    Abstract: An apparatus, according to one embodiment, includes: a module; and a plurality of tunnel valve read transducers arranged in an array extending along the module. Each of the tunnel valve read transducers includes: a sensor structure having a tunnel barrier layer and a free layer. Moreover, each of the tunnel valve read transducers includes a pair of hard bias magnets which sandwich the respective sensor structure therebetween, the hard bias magnets being positioned on opposite sides of the sensor structure along a cross-track direction. Furthermore, a thickness of each of the hard bias magnets at a thickest portion thereof is at least 10 times greater than a thickness of the free layer. Other systems, methods, and computer program products are described in additional embodiments.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: March 3, 2020
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Hugo E. Rothuizen
  • Patent number: 10580438
    Abstract: In one embodiment, an apparatus includes a module having an array of transducers and a heating element positioned proximate to the array of transducers. The heating element has opposite ends and a center portion therebetween, where the heating element is configured to produce more heat per unit length along the opposite ends than in the center portion.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: March 3, 2020
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Hugo E. Rothuizen
  • Publication number: 20200058324
    Abstract: A method of operating a magnetic tape within a tape drive. The tape drive comprises a tape head, which shows a tape-bearing surface meant to face a front side of a magnetic tape, in operation. The tape-bearing surface comprises a transducer area. This area includes at least one transducer, which is a read or write element configured to read or write to the magnetic tape, respectively. The method may include driving the tape (along a longitudinal direction of circulation thereof above the tape-bearing surface) and concomitantly ejecting a gas flow toward the transducer area. The gas flow ejected impinges on the back side of the driven tape (e.g., opposite to the front side of the tape), so as to locally urge the front side of the tape against the transducer area and thereby read or write to the tape via said at least one transducer.
    Type: Application
    Filed: October 4, 2019
    Publication date: February 20, 2020
    Inventors: Hugo E. Rothuizen, Peter Reininger, Walter Haeberle, Mark A. Lantz
  • Patent number: 10522182
    Abstract: A method of operating a magnetic tape within a tape drive. The tape drive comprises a tape head, which shows a tape-bearing surface meant to face a front side of a magnetic tape, in operation. The tape-bearing surface comprises a transducer area. This area includes at least one transducer, which is a read or write element configured to read or write to the magnetic tape, respectively. The method may include driving the tape (along a longitudinal direction of circulation thereof above the tape-bearing surface) and concomitantly ejecting a gas flow toward the transducer area. The gas flow ejected impinges on the back side of the driven tape (e.g., opposite to the front side of the tape), so as to locally urge the front side of the tape against the transducer area and thereby read or write to the tape via said at least one transducer.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: December 31, 2019
    Assignee: International Business Machines Corporation
    Inventors: Hugo E. Rothuizen, Peter Reininger, Walter Haeberle, Mark A. Lantz
  • Publication number: 20190369161
    Abstract: A computer-implemented method includes, by one or more processors in electronic communication with a tunneling magnetoresistive sensor, wherein the tunneling magnetoresistive sensor is a component of a magnetic storage drive configured to read magnetic data from a magnetic storage medium, detecting a short across the tunneling magnetoresistive sensor, measuring a change in resistance of the tunneling magnetoresistive sensor, measuring a change in voltage amplitude for the tunneling magnetoresistive sensor, and dividing said change in voltage amplitude by said change in resistance to yield a ratio. The computer-implemented method further includes, responsive to the ratio being greater than a predetermined ratio threshold, determining that the short is caused by a magnetic shunt. A corresponding computer program product and computer system are also disclosed.
    Type: Application
    Filed: June 19, 2019
    Publication date: December 5, 2019
    Inventors: Robert G. Biskeborn, Wlodzimierz S. Czarnecki, Icko E. T. Iben, Hugo E. Rothuizen
  • Publication number: 20190310326
    Abstract: A computer-implemented method includes, by one or more processors in electronic communication with a tunneling magnetoresistive sensor, wherein the tunneling magnetoresistive sensor is a component of a magnetic storage drive configured to read magnetic data from a magnetic storage medium, detecting a short across the tunneling magnetoresistive sensor, measuring a change in resistance of the tunneling magnetoresistive sensor, measuring a change in voltage amplitude for the tunneling magnetoresistive sensor, and dividing said change in voltage amplitude by said change in resistance to yield a ratio. The computer-implemented method further includes, responsive to the ratio being greater than a predetermined ratio threshold, determining that the short is caused by a magnetic shunt. A corresponding computer program product and computer system are also disclosed.
    Type: Application
    Filed: June 19, 2019
    Publication date: October 10, 2019
    Inventors: Robert G. Biskeborn, Wlodzimierz S. Czarnecki, Icko E. T. Iben, Hugo E. Rothuizen
  • Patent number: 10422829
    Abstract: A computer-implemented method includes, by one or more processors in electronic communication with a tunneling magnetoresistive sensor, wherein the tunneling magnetoresistive sensor is a component of a magnetic storage drive configured to read magnetic data from a magnetic storage medium, detecting a short across the tunneling magnetoresistive sensor, measuring a change in resistance of the tunneling magnetoresistive sensor, measuring a change in voltage amplitude for the tunneling magnetoresistive sensor, and dividing said change in voltage amplitude by said change in resistance to yield a ratio. The computer-implemented method further includes, responsive to the ratio being greater than a predetermined ratio threshold, determining that the short is caused by a magnetic shunt. A corresponding computer program product and computer system are also disclosed.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: September 24, 2019
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Wlodzimierz S. Czarnecki, Icko E. T. Iben, Hugo E. Rothuizen
  • Patent number: 10371742
    Abstract: A computer-implemented method includes, by one or more processors in electronic communication with a tunneling magnetoresistive sensor, wherein the tunneling magnetoresistive sensor is a component of a magnetic storage drive configured to read magnetic data from a magnetic storage medium, detecting a short across the tunneling magnetoresistive sensor, measuring a change in resistance of the tunneling magnetoresistive sensor, measuring a change in voltage amplitude for the tunneling magnetoresistive sensor, and dividing said change in voltage amplitude by said change in resistance to yield a ratio. The computer-implemented method further includes, responsive to the ratio being greater than a predetermined ratio threshold, determining that the short is caused by a magnetic shunt. A corresponding computer program product and computer system are also disclosed.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: August 6, 2019
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Wlodzimierz S. Czarnecki, Icko E. T. Iben, Hugo E. Rothuizen
  • Patent number: 10371743
    Abstract: A computer-implemented method includes, by one or more processors in electronic communication with a tunneling magnetoresistive sensor, wherein the tunneling magnetoresistive sensor is a component of a magnetic storage drive configured to read magnetic data from a magnetic storage medium, detecting a short across the tunneling magnetoresistive sensor, measuring a change in resistance of the tunneling magnetoresistive sensor, measuring a change in voltage amplitude for the tunneling magnetoresistive sensor, and dividing said change in voltage amplitude by said change in resistance to yield a ratio. The computer-implemented method further includes, responsive to the ratio being greater than a predetermined ratio threshold, determining that the short is caused by a magnetic shunt. A corresponding computer program product and computer system are also disclosed.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: August 6, 2019
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Wlodzimierz S. Czarnecki, Icko E. T. Iben, Hugo E. Rothuizen
  • Patent number: 10374475
    Abstract: An apparatus according to one embodiment includes a motor having: a rotor, a magnet, and a damping layer positioned between the rotor and the magnet. The damping layer is constructed of a material characterized by converting kinetic energy into heat.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: August 6, 2019
    Assignee: International Business Machines Corporation
    Inventors: David H. F. Harper, Hugo E. Rothuizen
  • Patent number: 10278306
    Abstract: The invention relates to a cooling arrangement comprising a heat spreader (2) comprising a first surface (5), a second surface (8), at least one heat absorption chamber (9) and at least one heat dissipation chamber (10), the at least one heat absorption chamber (9) being in thermal contact with the first surface (5) and the at least one heat dissipation chamber (10) being in thermal contact with the second surface (8) and hydraulically coupled to the at least one heat absorption chamber (9). A cooling fluid (13) can be driven from the heat absorption chamber (9) to the heat dissipation chamber (10) using a plurality of flow patterns for cooling the first surface (5).
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: April 30, 2019
    Assignee: GLOBAL FOUNDRIES INC.
    Inventors: Thomas J. Brunschwiler, Urs Kloter, Ryan Joseph Linderman, Bruno Michel, Hugo E. Rothuizen, Reto Waelchli
  • Patent number: 10170143
    Abstract: A unidirectional and bi-directional tape head with sub-ambient pressure cavities. The tape head is adapted for reading and/or writing to a magnetic tape. The tape head includes: a tape-bearing surface; a transducer area, having at least one transducer designed for reading and/or writing to the magnetic tape; a cavity open on the tape-bearing surface adjacent to the transducer area that extends parallel to the transducer area and transversally to the longitudinal direction of circulation of the tape such that an opening of the cavity faces the tape in operation; and one or more air bleed slots connected to the cavity. The cavity is further dimensioned and arranged with respect to the transducer area to create, upon circulation of the tape in operation, sub-ambient pressure therein.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: January 1, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Johan B. C. Engelen, Mark A. Lantz, Hugo E. Rothuizen
  • Patent number: 10091909
    Abstract: The invention relates to a cooling arrangement comprising a heat spreader (2) comprising a first surface (5), a second surface (8), at least one heat absorption chamber (9) and at least one heat dissipation chamber (10), the at least one heat absorption chamber (9) being in thermal contact with the first surface (5) and the at least one heat dissipation chamber (10) being in thermal contact with the second surface (8) and hydraulically coupled to the at least one heat absorption chamber (9). A cooling fluid (13) can be driven from the heat absorption chamber (9) to the heat dissipation chamber (10) using a plurality of flow patterns for cooling the first surface (5).
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: October 2, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Thomas J. Brunschwiler, Urs Kloter, Ryan Joseph Linderman, Bruno Michel, Hugo E. Rothuizen, Reio Waelchli
  • Publication number: 20180277149
    Abstract: An apparatus, according to one embodiment, includes: a module; and a plurality of tunnel valve read transducers arranged in an array extending along the module. Each of the tunnel valve read transducers includes: a sensor structure having a tunnel barrier layer and a free layer. Moreover, each of the tunnel valve read transducers includes a pair of hard bias magnets which sandwich the respective sensor structure therebetween, the hard bias magnets being positioned on opposite sides of the sensor structure along a cross-track direction. Furthermore, a thickness of each of the hard bias magnets at a thickest portion thereof is at least 10 times greater than a thickness of the free layer. Other systems, methods, and computer program products are described in additional embodiments.
    Type: Application
    Filed: May 31, 2018
    Publication date: September 27, 2018
    Inventors: Robert G. Biskeborn, Hugo E. Rothuizen
  • Publication number: 20180247664
    Abstract: An apparatus, according to one embodiment, includes: a module, and a plurality of tunnel valve read transducers arranged in an array extending along the module. Each of the tunnel valve read transducers includes: a sensor structure, an upper magnetic shield, a lower magnetic shield, an upper conducting spacer layer between the sensor structure and the upper magnetic shield, a lower conducting spacer layer between the sensor structure and the lower magnetic shield, and electrically insulating layers on opposite sides of the sensor structure. The sensor structure includes a cap layer, a free layer, a tunnel barrier layer, a reference layer and an antiferromagnetic layer. Moreover, a height of the free layer measured in a direction perpendicular to a media bearing surface of the module is less than a width of the free layer measured in a cross-track direction perpendicular to an intended direction of media travel.
    Type: Application
    Filed: February 28, 2017
    Publication date: August 30, 2018
    Inventors: Robert G. Biskeborn, Hugo E. Rothuizen
  • Patent number: 10062398
    Abstract: An apparatus, according to one embodiment, includes: a module, and a plurality of tunnel valve read transducers arranged in an array extending along the module. Each of the tunnel valve read transducers includes: a sensor structure, an upper magnetic shield, a lower magnetic shield, an upper conducting spacer layer between the sensor structure and the upper magnetic shield, a lower conducting spacer layer between the sensor structure and the lower magnetic shield, and electrically insulating layers on opposite sides of the sensor structure. The sensor structure includes a cap layer, a free layer, a tunnel barrier layer, a reference layer and an antiferromagnetic layer. Moreover, a height of the free layer measured in a direction perpendicular to a media bearing surface of the module is less than a width of the free layer measured in a cross-track direction perpendicular to an intended direction of media travel.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: August 28, 2018
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Hugo E. Rothuizen
  • Patent number: 10062397
    Abstract: A tape head is provided for reading and/or writing to a magnetic tape. The tape head including a step-like cross-sectional profile, so as to exhibit a riser between two treads, the latter respectively formed by a tape-bearing surface and a recessed surface, wherein: the tape-bearing surface is essentially flat and configured to contact a magnetic tape, and comprises at least one transducer, the latter being a read or a write element, configured to read or write to the magnetic tape, respectively; and the recessed surface is recessed from the tape-bearing surface by a distance h corresponding to a height of the riser, a width w of the recessed surface along a direction parallel to a longitudinal direction z of circulation of the tape being such that a ratio h/w is at least of 0.01. Related tape head apparatuses for recording or reproducing multi-track tapes are also provided.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: August 28, 2018
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Johan Engelen, Mark A. Lantz, Hugo E. Rothuizen
  • Patent number: 10002627
    Abstract: A tape head including a body exhibiting a tape-bearing area is provided. The body includes at least one transducer that is a read element or a write element, configured in the tape head so as for the tape head to read from or write to a magnetic tape, in operation. The tape-bearing area is essentially covered by an electrically conducting layer of material. This way, the exposed surface of the electrically conducting layer essentially forms the tape-bearing surface of the tape head, which surface contacts the magnetic tape, in operation. A tape head apparatus for recording or reproducing multi-track tapes including the tape head is also provided.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: June 19, 2018
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Johan Engelen, Mark A. Lantz, Hugo E. Rothuizen
  • Publication number: 20180120370
    Abstract: A computer-implemented method includes, by one or more processors in electronic communication with a tunneling magnetoresistive sensor, wherein the tunneling magnetoresistive sensor is a component of a magnetic storage drive configured to read magnetic data from a magnetic storage medium, detecting a short across the tunneling magnetoresistive sensor, measuring a change in resistance of the tunneling magnetoresistive sensor, measuring a change in voltage amplitude for the tunneling magnetoresistive sensor, and dividing said change in voltage amplitude by said change in resistance to yield a ratio. The computer-implemented method further includes, responsive to the ratio being greater than a predetermined ratio threshold, determining that the short is caused by a magnetic shunt. A corresponding computer program product and computer system are also disclosed.
    Type: Application
    Filed: December 29, 2017
    Publication date: May 3, 2018
    Inventors: Robert G. Biskeborn, Wlodzimierz S. Czarnecki, Icko E. T. Iben, Hugo E. Rothuizen