Patents by Inventor Hugo W-K. Chan

Hugo W-K. Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6920528
    Abstract: A smart memory includes a memory array and one or more memory-intensive additional functions, all packaged in a standard memory package that has substantially the same fit and form as a standard integrated-circuit memory. One type of smart memory chip is a multi-media RAM (MMRAM) chip that provides on a single integrated-circuit chip a memory array and a compressor/decompressor (CODEC) section where connections between the memory array section and the CODEC section are on the single integrated-circuit die. The smart memory eliminates the need for additional special function integrated-circuit packages and significantly reduces the clock rate and the power consumption of a baseband chip in a personal communication device.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: July 19, 2005
    Assignee: Nanoamp Solutions, Inc
    Inventor: Hugo W. K Chan
  • Patent number: 6681287
    Abstract: A smart memory includes a memory array and one or more memory-intensive additional functions, all packaged in a standard memory package that has substantially the same fit and form as a standard integrated-circuit memory. One type of smart memory chip is a multi-media RAM (MMRAM) chip that provides on a single integrated-circuit chip a memory array and a compressor/decompressor (CODEC) section where connections between the memory array section and the CODEC section are on the single integrated-circuit die. The smart memory eliminates the need for additional special function integrated-circuit packages and significantly reduces the clock rate and the power consumption of a baseband chip in a personal communication device.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: January 20, 2004
    Assignee: Nanoamp Solutions, Inc.
    Inventor: Hugo W. K. Chan
  • Publication number: 20030005214
    Abstract: A smart memory includes a memory array and one or more memory-intensive additional functions, all packaged in a standard memory package that has substantially the same fit and form as a standard integrated-circuit memory. One type of smart memory chip is a multi-media RAM (MMRAM) chip that provides on a single integrated-circuit chip a memory array and a compressor/decompressor (CODEC) section where connections between the memory array section and the CODEC section are on the single integrated-circuit die. The smart memory eliminates the need for additional special function integrated-circuit packages and significantly reduces the clock rate and the power consumption of a baseband chip in a personal communication device.
    Type: Application
    Filed: July 2, 2001
    Publication date: January 2, 2003
    Inventor: Hugo W.K. Chan
  • Patent number: 6352741
    Abstract: High temperature superconductive (HTS) integrated circuits can be fabricated in three ways according to the invention. First, a planar multiple layer HTS integrated circuit is fabricated using multiple HTS layers. The layers include altered regions which have been bombarded using ion implantation to destroy superconductivity of the altered regions without interrupting the lattice structure of the altered regions. Second, a planar multiple-layer HTS integrated circuit includes upper and lower HTS layers, each including central and opposing regions. A first implant energy is used to destroy superconducting properties of the opposing regions of the lower HTS layer without interrupting the lattice structure. A second implant energy is used to destroy superconducting properties of a top portion of the central region to define a contact. Third, a HTS integrated circuit is formed from a single HTS layer using three ion implantation steps and ions having first, second and third energies and range.
    Type: Grant
    Filed: April 17, 1995
    Date of Patent: March 5, 2002
    Assignee: TRW Inc.
    Inventors: Hugo W. K. Chan, Arnold H. Silver
  • Patent number: 6335108
    Abstract: An implant patterned superconductive device and a method for indirect implant-patterning of oxide superconducting materials is provided. The method forms a device having an oxide superconducting layer on a substrate, deposits a passivation layer atop the oxide superconducting layer, and implants chemical impurities in a selected portion of the superconducting layer through the passivation layer. This modifies the conductivity of the selected portion of the oxide superconducting layer and electrically isolates the selected portion from the non-selected portion of the oxide superconducting layer. The passivation layer is made of a material less susceptible to implant damage than the oxide superconducting layer to allow inhibition of the oxide superconducting layer while protecting the crystalline structure of the top surface of the oxide superconducting layer and keeping it planarized.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: January 1, 2002
    Assignee: TRW Inc.
    Inventors: John R. LaGraff, Claire L. Pettiette-Hall, James M. Murduck, Hugo W-K. Chan
  • Patent number: 6188919
    Abstract: A SNS Josephson junction (10) is provided for use in a superconducting integrated circuit. The SNS junction (10) includes a first high temperature superconducting (HTS) layer (14) deposited and patterned on a substrate (18), such that the first HTS layer (14) is selectively removed to expose a top surface of the substrate (18) as well as to form an angular side surface (22) on the first HTS layer (14) adjacent to the exposed top surface of the substrate (18). Ion implantation is used to form a junction region (12) having non-superconducting properties along the angular side surface (22) of the first HTS layer (14). A second HTS layer (16) is then deposited and patterned over at least a portion of the first HTS layer (14) and the exposed top surface of the substrate (18), thereby forming a SNS Josephson junction.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: February 13, 2001
    Assignee: TRW Inc.
    Inventors: John R. LaGraff, James M. Murduck, Hugo W-K. Chan
  • Patent number: 6147032
    Abstract: An implant patterned superconductive device and a method for indirect implant-patterning of oxide superconducting materials is provided. The method forms a device having an oxide superconducting layer on a substrate, deposits a passivation layer atop the oxide superconducting layer, and implants chemical impurities in a selected portion of the superconducting layer through the passivation layer. This modifies the conductivity of the selected portion of the oxide superconducting layer and electrically isolates the selected portion from the non-selected portion of the oxide superconducting layer. The passivation layer is made of a material less susceptible to implant damage than the oxide superconducting layer to allow inhibition of the oxide superconducting layer while protecting the crystalline structure of the top surface of the oxide superconducting layer and keeping it planarized.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: November 14, 2000
    Assignee: TRW Inc.
    Inventors: John R. LaGraff, Claire L. Pettiette-Hall, James M. Murduck, Hugo W-K. Chan
  • Patent number: 5872731
    Abstract: A multi-state Josephson memory in a superconductor integrated circuit includes a plurality of superconductive quantum interference device (SQUID) memory cells 2 each having a SQUID 4 characterized by a SQUID loop inductance L and a junction critical current I.sub.c, which determine the number of memory states that can be stored in the SQUID 4. A gate current I.sub.g is transmitted to the superconductive inductors 6 and 8 of the SQUID 4 to perform a read operation by crossing a designated number of current threshold boundaries corresponding to the memory state stored in the SQUID, so that the Josephson junction 12 of the SQUID 4 generates a number of pulses corresponding to the memory state. A control current I.sub.con writes data to the SQUID 4 through a control current input 16, and is preferably magnetically coupled to the SQUID 4 through superconductive inductor pairs 18, 6 and 20, 8. In a preferred embodiment, a plurality of SQUID memory cells 70a, 70b, . . .
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: February 16, 1999
    Assignee: TRW Inc.
    Inventors: Hugo W-K. Chan, Arnold H. Silver, Robert D. Sandell
  • Patent number: 5436451
    Abstract: A high-speed gamma pulse suppression circuit employing a frequency discrimination and sampling technique for elimination of gamma induced noise from semiconductor infrared detectors. The gamma pulse suppression circuit includes a high pass filter for separating high-frequency gamma induced pulses from a detector signal and a gamma pulse detector for detecting the gamma induced pulses. The gamma pulse suppression circuit is connected in parallel with a detector readout circuit such that the suppression circuit causes the readout circuit to discard samples of the detector signal in which gamma induced pulses are detected. The gamma pulse suppression circuit provides effective and efficient real time gamma pulse suppression by completely eliminating the detected gamma pulses from the detector signal, while preserving the quality of the signal.
    Type: Grant
    Filed: February 2, 1993
    Date of Patent: July 25, 1995
    Assignee: TRW Inc.
    Inventors: Arnold H. Silver, Hugo W.-K. Chan
  • Patent number: 4892844
    Abstract: A three-layer metal contact including aluminum is provided for silicon-based semiconductor devices to minimize the effects of formation of silicon precipitates in the aluminum layer and low contact junction leakage. The metal contact comprises a first layer of a refractory metal silicide formed on a silicon surface, an intermediate layer of aluminum formed on the refractory metal silicide and a top layer of a refractory metal silicide formed on the layer of aluminum. Where contact is made to polysilicon layers forming high resistance load resistors, the metal contact of the invention prevents reduction in resistance resulting from the interdiffusion of silicon and aluminum.
    Type: Grant
    Filed: December 16, 1988
    Date of Patent: January 9, 1990
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robin W. Cheung, Bernard W. K. Ho, Hsiang-Wen Chen, Hugo W. K. Chan
  • Patent number: 4796081
    Abstract: A three-layer metal contact including aluminum is provided for silicon-based semiconductor devices to minimize the effects of formation of silicon precipitates in the aluminum layer and low contact junction leakage. The metal contact comprises a first layer of a refractory metal silicide formed on a silicon surface, an intermediate layer of aluminum formed on the refractory metal silicide and a top layer of a refractory metal silicide formed on the layer of aluminum. Where contact is made to polysilicon layers forming high resistance load resistors, the metal contact of the invention prevents reduction in resistance resulting from the interdiffusion of silicon and aluminum.
    Type: Grant
    Filed: May 2, 1986
    Date of Patent: January 3, 1989
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robin W. Cheung, Bernard W. K. Ho, Hsiang-Wen Chen, Hugo W. K. Chan
  • Patent number: 4762805
    Abstract: An integrated circuit fabrication technique for constructing field isolation structure components and subposing electrical barrier isolation region components in a substrate is disclosed. A nitride-less mask is used to pattern a major surface of the substrate with apertures where the isolation barrier components are to be implanted. Following the formation of the isolation components, a thick oxide is formed on the substrate, masked, and etched to form field oxide structures on the major surface of the substrate. Bird beaks, bird crests, crystalline dislocations and white ribbon problems associated with nitride masking processes are virtually eliminated.
    Type: Grant
    Filed: December 17, 1985
    Date of Patent: August 9, 1988
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robin W. Cheung, Hugo W. K. Chan
  • Patent number: 4727045
    Abstract: An improved process for fabricating a static RAM cell having a polysilicon load resistance is provided. Following formation of source, gate and drain regions, a planarized dielectric structure is formed over the junction regions, and via openings which expose portions of the source and drain regions are created. The via openings are filled with polysilicon interconnects, appropriately doped for low resistance contacts. Where the contact includes a resistor load, the polysilicon is not doped. Thus, the prior art approach of providing doped and undoped regions along the same polysilicon interconnect is not employed. Rather, the doped and undoped regions are physically separated. Consequently, the minimum length of the poly load is limited only by the ability to form via openings of small dimensions.
    Type: Grant
    Filed: July 30, 1986
    Date of Patent: February 23, 1988
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robin W. Cheung, Hugo W. K. Chan
  • Patent number: 4693925
    Abstract: An improved integrated circuit structure characterized by enhanced step coverage and a method of making it are disclosed. The structure comprises a base layer of silicon, a first oxide layer on the silicon layer, strips of poly silicon having selected portions thereof reacted with a metal capable of forming a metal silicide in situ on the surface of the poly silicon strips, a further oxide layer over the metal silicide, and a metal layer providing electrical contact to selected portions of the structure. The construction makes it possible to remove all of an intermediate oxide layer during manufacture except for an oxide layer above the poly load resistor. This elimination of one oxide layer, together with the integration of the conductive metal silicide and underlying poly silicon into one layer and the rounding of the metal silicide edge with oxide spacers via anisotropic etching of the intermediate oxide layer, permits better step coverage for the resulting structure.
    Type: Grant
    Filed: January 24, 1986
    Date of Patent: September 15, 1987
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robin W. Cheung, Hugo W. K. Chan
  • Patent number: 4581815
    Abstract: An improved integrated circuit structure characterized by enhanced step coverage and a method of making it are disclosed. The structure comprises a base layer of silicon, a first oxide layer on the silicon layer, strips of poly silicon having selected portions thereof reacted with a metal capable of forming a metal silicide in situ on the surface of the poly silicon strips, a further oxide layer over the metal silicide, and a metal layer providing electrical contact to selected portions of the structure. The construction makes it possible to remove all of an intermediate oxide layer during manufacture except for an oxide layer above the poly load resistor. This elimination of one oxide layer, together with the integration of the conductive metal silicide and underlying poly silicon into one layer and the rounding of the metal silicide edge with oxide spacers via anisotropic etching of the intermediate oxide layer, permits better step coverage for the resulting structure.
    Type: Grant
    Filed: March 1, 1984
    Date of Patent: April 15, 1986
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Robin W. Cheung, Hugo W. K. Chan
  • Patent number: 4569122
    Abstract: A fabrication method and resulting integrated circuit structure that provide a second level of interconnect, a low resistance contact strap between underlying layers which is not sensitive to alignment and low lateral diffusion polysilicon load. The method comprises the steps of providing contact openings in an insulating layer on a wafer to any desired underlying circuit layers, depositing a silicide layer on the wafer, removing selected portions of the silicide layer, depositing a polysilicon layer on the wafer, lightly doping the polysilicon layer to a level appropriate for the resistor, and then removing portions of the polysilicon along with underlying silicide.
    Type: Grant
    Filed: March 9, 1983
    Date of Patent: February 11, 1986
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Hugo W. K. Chan