Patents by Inventor Hui Hua

Hui Hua has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240172456
    Abstract: A method of manufacturing a hybrid random access memory in a system-on-chip, including steps of providing a semiconductor substrate with a magnetoresistive random access memory (MRAM) region and a resistive random-access memory (ReRAM) region, forming multiple ReRAM cells in the ReRAM region on the semiconductor substrate, forming a first dielectric layer on the semiconductor substrate, wherein the ReRAM cells are in the first dielectric layer, forming multiple MRAM cells in the MRAM region on the first dielectric layer, and forming a second dielectric layer on the first dielectric layer, wherein the MRAM cells are in the second dielectric layer.
    Type: Application
    Filed: January 23, 2024
    Publication date: May 23, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Kai Hsu, Hui-Lin Wang, Ching-Hua Hsu, Yi-Yu Lin, Ju-Chun Fan, Hung-Yueh Chen
  • Publication number: 20240163947
    Abstract: A method for multi-link operation (MLO) is provided. The method for MLO may be applied to an apparatus. The method for MLO may include the following steps. A multi-chip controller of the apparatus may assign different data to a plurality of chips of the apparatus, wherein each chip corresponds to one link of multi-links. Each chip may determine whether transmission of the assigned data has failed. A first chip of the chips may transmit the assigned data to an access point (AP) in response to the first chip determining that the transmission of the assigned data has not failed.
    Type: Application
    Filed: November 8, 2023
    Publication date: May 16, 2024
    Inventors: Cheng-Ying WU, Wei-Wen LIN, Shu-Min CHENG, Hui-Ping TSENG, Chi-Han HUANG, Chih-Chun KUO, Yang-Hung PENG, Hao-Hua KANG
  • Publication number: 20240153896
    Abstract: A first protective layer is formed on a first die and a second die, and openings are formed within the first protective layer. The first die and the second die are encapsulated such that the encapsulant is thicker than the first die and the second die, and vias are formed within the openings. A redistribution layer can also be formed to extend over the encapsulant, and the first die may be separated from the second die.
    Type: Application
    Filed: January 12, 2024
    Publication date: May 9, 2024
    Inventors: Hui-Min Huang, Chih-Wei Lin, Tsai-Tsung Tsai, Ming-Da Cheng, Chung-Shi Liu, Chen-Hua Yu
  • Patent number: 11978678
    Abstract: A display device includes a first substrate, a light-emitting element, a light conversion layer, and a color filter layer. The light-emitting element is disposed on the first substrate. The light conversion layer is disposed on the light-emitting element. In addition, the color filter layer is overlapped the light-emitting element and the light conversion layer.
    Type: Grant
    Filed: August 5, 2022
    Date of Patent: May 7, 2024
    Assignee: INNOLUX CORPORATION
    Inventors: Tung-Kai Liu, Tsau-Hua Hsieh, Wei-Cheng Chu, Chun-Hsien Lin, Chandra Lius, Ting-Kai Hung, Kuan-Feng Lee, Ming-Chang Lin, Tzu-Min Yan, Hui-Chieh Wang
  • Patent number: 11973067
    Abstract: Methods for manufacturing a display device are provided. The methods include providing a plurality of light-emitting units and a substrate. The methods also include transferring the light-emitting units to a transfer head. The methods further include attaching at least one of the plurality of light-emitting units on the transfer head to the substrate by a bonding process, wherein the transfer head and the substrate satisfy the following equation during the bonding process: 0 ? ? ? T ? ? 1 T ? ? 2 ? A ? ( T ) ? dT - ? T ? ? 1 T ? ? 3 ? E ? ( T ) ? dT ? ? < 0.01 wherein A(T) is the coefficient of thermal expansion of the transfer head, E(T) is the coefficient of thermal expansion of the substrate, T1 is room temperature, T2 is the temperature of the transfer head, and T3 is the temperature of the substrate.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: April 30, 2024
    Assignee: INNOLUX CORPORATION
    Inventors: Tung-Kai Liu, Tsau-Hua Hsieh, Fang-Ying Lin, Kai Cheng, Hui-Chieh Wang, Shun-Yuan Hu
  • Publication number: 20240126728
    Abstract: JSON Duality Views are object views that return JDV objects. JDV objects are virtual because they are not stored in a database as JSON objects. Rather, JDV objects are stored in shredded form across tables and table attributes (e.g. columns) and returned by a DBMS in response to database commands that request a JDV object from a JSON Duality View. Through JSON Duality Views, changes to the state of a JDV object may be specified at the level of a JDV object. JDV objects are updated in a database using optimistic lock.
    Type: Application
    Filed: October 14, 2022
    Publication date: April 18, 2024
    Inventors: ZHEN HUA LIU, JUAN R. LOAIZA, SUNDEEP ABRAHAM, SHUBHA BOSE, HUI JOE CHANG, SHASHANK GUGNANI, BEDA CHRISTOPH HAMMERSCHMIDT, TIRTHANKAR LAHIRI, YING LU, DOUGLAS JAMES MCMAHON, AUROSISH MISHRA, AJIT MYLAVARAPU, SUKHADA PENDSE, ANANTH RAGHAVAN
  • Publication number: 20240126816
    Abstract: Herein is database query acceleration from dynamic discovery of whether contents of a persistent column can be stored in an accelerated representation in storage-side memory. In an embodiment, based on data type discovery, a storage server detects that column values in a persistent column have a particular data type. Based on storage-side metadata including a frequency of access of the persistent column as an offload input column for offload computation requests on a certain range of memory addresses, the storage server autonomously decides to generate and store, in storage-side memory in the storage server, an accelerated representation of the persistent column that is based on the particular data type. The storage server receives a request to perform an offload computation for the offload input column. Based on the accelerated representation of the persistent column, execution of the offload computation is accelerated.
    Type: Application
    Filed: September 29, 2023
    Publication date: April 18, 2024
    Inventors: Jorge Luis Issa Garcia, Teck Hua Lee, Sheldon Andre Kevin Lewis, Bangalore Prashanth, Hui Joe Chang, Zhen Hua Liu, Aurosish Mishra, Shasank K. Chavan
  • Publication number: 20240130246
    Abstract: A method for fabricating a semiconductor device includes the steps of first forming a first inter-metal dielectric (IMD) layer on a substrate and a metal interconnection in the first IMD layer, forming a magnetic tunneling junction (MTJ) and a top electrode on the metal interconnection, forming a spacer adjacent to the MTJ and the top electrode, forming a second IMD layer around the spacer, forming a cap layer on the top electrode, the spacer, and the second IMD layer, and then patterning the cap layer to form a protective cap on the top electrode and the spacer.
    Type: Application
    Filed: December 25, 2023
    Publication date: April 18, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Po-Kai Hsu, Ju-Chun Fan, Ching-Hua Hsu, Yi-Yu Lin, Hung-Yueh Chen
  • Publication number: 20240126729
    Abstract: JSON Duality Views are object views that return JDV objects. JDV objects are virtual because they are not stored in a database as JSON objects. Rather, JDV objects are stored in shredded form across tables and table attributes (e.g. columns) and returned by a DBMS in response to database commands that request a JDV object from a JSON Duality View. Through JSON Duality Views, changes to the state of a JDV object may be specified at the level of a JDV object. JDV objects are updated in a database using optimistic lock.
    Type: Application
    Filed: October 14, 2022
    Publication date: April 18, 2024
    Inventors: ZHEN HUA LIU, JUAN R. LOAIZA, SUNDEEP ABRAHAM, SHUBHA BOSE, HUI JOE CHANG, SHASHANK GUGNANI, BEDA CHRISTOPH HAMMERSCHMIDT, TIRTHANKAR LAHIRI, YING LU, DOUGLAS JAMES MCMAHON, AUROSISH MISHRA, AJIT MYLAVARAPU, SUKHADA PENDSE, ANANTH RAGHAVAN
  • Publication number: 20240126743
    Abstract: JSON Duality Views are object views that return JDV objects. JDV objects are virtual because they are not stored in a database as JSON objects. Rather, JDV objects are stored in shredded form across tables and table attributes (e.g. columns) and returned by a DBMS in response to database commands that request a JDV object from a JSON Duality View. Through JSON Duality Views, changes to the state of a JDV object may be specified at the level of a JDV object. JDV objects are updated in a database using optimistic lock.
    Type: Application
    Filed: October 14, 2022
    Publication date: April 18, 2024
    Inventors: ZHEN HUA LIU, JUAN R. LOAIZA, SUNDEEP ABRAHAM, SHUBHA BOSE, HUI JOE CHANG, SHASHANK GUGNANI, BEDA CHRISTOPH HAMMERSCHMIDT, TIRTHANKAR LAHIRI, YING LU, DOUGLAS JAMES MCMAHON, AUROSISH MISHRA, AJIT MYLAVARAPU, SUKHADA PENDSE, ANANTH RAGHAVAN
  • Patent number: 11961811
    Abstract: A semiconductor structure includes a semiconductor element and a first bonding structure. The semiconductor element has a first surface and a second surface opposite to the first surface. The first bonding structure is disposed adjacent to the first surface of the semiconductor element, and includes a first electrical connector, a first insulation layer surrounding the first electrical connector and a first conductive layer surrounding the first insulation layer.
    Type: Grant
    Filed: June 14, 2022
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Hung-Jui Kuo, Hui-Jung Tsai, Tsao-Lun Chang
  • Patent number: 11955579
    Abstract: A method for manufacturing a semiconductor device is provided. The method includes forming a plurality of light-emitting elements on a first substrate and forming a first pattern array on a second substrate, wherein the first pattern array includes an adhesive layer. The method also includes transferring the plurality of light-emitting elements from the first substrate to the second substrate and forming the first pattern array on a third substrate. The method includes transferring the plurality of light-emitting elements from the second substrate to the third substrate, and reducing an adhesion force of a portion of the adhesive layer. The method also includes forming a second pattern array on a fourth substrate, and transferring the plurality of light-emitting elements from the third substrate to the fourth substrate. The pitch between the plurality of light-emitting elements on the first substrate is different than the pitch of the first pattern array.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: April 9, 2024
    Assignee: INNOLUX CORPORATION
    Inventors: Kai Cheng, Tsau-Hua Hsieh, Fang-Ying Lin, Tung-Kai Liu, Hui-Chieh Wang, Chun-Hsien Lin, Jui-Feng Ko
  • Patent number: 11955560
    Abstract: A thin film transistor (TFT) structure includes a gate electrode, a gate dielectric layer on the gate electrode, a channel layer including a semiconductor material with a first polarity on the gate dielectric layer. The TFT structure also includes a multi-layer material stack on the channel layer, opposite the gate dielectric layer, an interlayer dielectric (ILD) material over the multi-layer material stack and beyond a sidewall of the channel layer. The TFT structure further includes source and drain contacts through the interlayer dielectric material, and in contact with the channel layer, where the multi-layer material stack includes a barrier layer including oxygen and a metal in contact with the channel layer, where the barrier layer has a second polarity. A sealant layer is in contact with the barrier layer, where the sealant layer and the ILD have a different composition.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Arnab Sen Gupta, Travis W. LaJoie, Sarah Atanasov, Chieh-Jen Ku, Bernhard Sell, Noriyuki Sato, Van Le, Matthew Metz, Hui Jae Yoo, Pei-Hua Wang
  • Patent number: 11956972
    Abstract: A semiconductor memory device includes a substrate having a memory area and a logic circuit area thereon, a first interlayer dielectric layer on the substrate, and a second interlayer dielectric layer on the substrate. An embedded memory cell structure is disposed within the memory area between the first interlayer dielectric layer and the second interlayer dielectric layer. The second interlayer dielectric layer includes a first portion covering the embedded memory cell structure within the memory area and a second portion covering the logic circuit area. A top surface of the first portion is coplanar with a top surface of the second portion.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: April 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Si-Han Tsai, Ching-Hua Hsu, Chen-Yi Weng, Po-Kai Hsu
  • Patent number: 11957061
    Abstract: A semiconductor device includes a substrate, a first dielectric layer, a second dielectric layer, and a third dielectric layer. The first dielectric layer is disposed on the substrate, around a first metal interconnection. The second dielectric layer is disposed on the first dielectric layer, around a via and a second metal interconnection. The second metal interconnection directly contacts the first metal interconnection. The third dielectric layer is disposed on the second dielectric layer, around a first magnetic tunneling junction (MTJ) structure and a third metal interconnection. The third metal interconnection directly contacts top surfaces of the first MTJ structure and the second metal interconnection, and the first MTJ structure directly contacts the via.
    Type: Grant
    Filed: May 23, 2023
    Date of Patent: April 9, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Po-Kai Hsu, Ju-Chun Fan, Yi-Yu Lin, Ching-Hua Hsu, Hung-Yueh Chen
  • Patent number: 11949040
    Abstract: A method for manufacturing a semiconductor device is provided. The method includes forming a plurality of diodes on a first substrate and forming a first pattern array on a second substrate. The method also includes transferring the plurality of diodes from the first substrate to the second substrate. The method further includes forming the first pattern array on a third substrate. In addition, the method includes transferring the plurality of diodes from the second substrate to the third substrate. The method also includes forming a second pattern array on a fourth substrate. The method further includes transferring the plurality of diodes from the third substrate to the fourth substrate. The pitch between the plurality of diodes on the first substrate is different from the pitch of the first pattern array.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: April 2, 2024
    Assignee: INNOLUX CORPORATION
    Inventors: Kai Cheng, Tsau-Hua Hsieh, Fang-Ying Lin, Tung-Kai Liu, Hui-Chieh Wang, Chun-Hsien Lin, Jui-Feng Ko
  • Publication number: 20240107890
    Abstract: A method for fabricating semiconductor device includes the steps of forming an inter-metal dielectric (IMD) layer on a substrate, forming a metal interconnection in the IMD layer, forming a magnetic tunneling junction (MTJ) on the metal interconnection, and performing a trimming process to shape the MTJ. Preferably, the MTJ includes a first slope and a second slope and the first slope is less than the second slope.
    Type: Application
    Filed: October 24, 2022
    Publication date: March 28, 2024
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Chen-Yi Weng, Ching-Hua Hsu, Jing-Yin Jhang
  • Publication number: 20240105901
    Abstract: In an embodiment, a device includes: an interconnect structure including a first contact pad, a second contact pad, and an alignment mark; a light emitting diode including a cathode and an anode, the cathode connected to the first contact pad; an encapsulant encapsulating the light emitting diode; a first conductive via extending through the encapsulant, the first conductive via including a first seed layer, the first seed layer contacting the second contact pad; a second conductive via extending through the encapsulant, the second conductive via including a second seed layer, the first seed layer and the second seed layer including a first metal; and a hardmask layer between the second seed layer and the alignment mark, the hardmask layer including a second metal, the second metal different from the first metal.
    Type: Application
    Filed: December 1, 2023
    Publication date: March 28, 2024
    Inventors: Chen-Hua Yu, Keng-Han Lin, Hung-Jui Kuo, Hui-Jung Tsai
  • Publication number: 20240099145
    Abstract: The present disclosure provides a piezoelectric device and a preparation method therefor, a panel, and a tactile reproduction apparatus. The piezoelectric device includes: a substrate; a bottom electrode layer disposed on the substrate; a piezoelectric functional layer disposed on the bottom electrode layer; a top electrode layer disposed on the piezoelectric functional layer; an insulation layer, arranged to cover an edge portion of the top electrode layer, the piezoelectric functional layer exposed from the top electrode layer and the bottom electrode layer exposed from the piezoelectric functional layer, an edge of the insulation layer has a slope angle less than 60 degrees; and a wiring layer disposed on the insulation layer, the wiring layer at least partially covers the top electrode layer exposed from the insulation layer, and the wiring layer covers the edge of the insulation layer in an overlapping area of the wiring layer and the insulation layer.
    Type: Application
    Filed: July 1, 2022
    Publication date: March 21, 2024
    Applicants: BEIJING BOE TECHNOLOGY DEVELOPMENT CO., LTD., BOE Technology Group Co., Ltd.
    Inventors: Hui Hua, Yuju Chen, Xiaotong Liu, Yongchun Tao
  • Publication number: 20240099154
    Abstract: A magnetoresistive random access memory (MRAM) device includes a first array region and a second array region on a substrate, a first magnetic tunneling junction (MTJ) on the first array region, a first top electrode on the first MTJ, a second MTJ on the second array region, and a second top electrode on the second MTJ. Preferably, the first top electrode and the second top electrode include different nitrogen to titanium (N/Ti) ratios.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 21, 2024
    Applicant: UNITED MICROELECTRONICS CORP
    Inventors: Hui-Lin Wang, Si-Han Tsai, Dong-Ming Wu, Chen-Yi Weng, Ching-Hua Hsu, Ju-Chun Fan, Yi-Yu Lin, Che-Wei Chang, Po-Kai Hsu, Jing-Yin Jhang