Patents by Inventor Hui Yuan XIONG

Hui Yuan XIONG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11887696
    Abstract: Described herein are systems and methods that receive as input a DNA or RNA sequence, extract features, and apply layers of processing units to compute one ore more condition-specific cell variables, corresponding to cellular quantities measured under different conditions. The system may be applied to a sequence containing a genetic variant, and also to a corresponding reference sequence to determine how much the condition-specific cell variables change because of the variant. The change in the condition-specific cell variables are used to compute a score for how deleterious a variant is, to classify a variant's level of deleteriousness, to prioritize variants for subsequent processing, and to compare a test variant to variants of known deleteriousness.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: January 30, 2024
    Assignee: DEEP GENOMICS INCORPORATED
    Inventors: Brendan Frey, Michael K. K. Leung, Andrew Thomas Delong, Hui Yuan Xiong, Babak Alipanahi, Leo J. Lee, Hannes Bretschneider
  • Patent number: 11769073
    Abstract: Methods and systems for expanding a training set of one or more original biological sequences are provided. An original training set is obtained, wherein the original training set comprises one or more original biological sequences. Saliency values corresponding to one or more elements in each of the one or more original biological sequences are obtained. For each of the original biological sequences, one or more modified biological sequences are produced and the one or more modified biological sequences are associated with the original biological sequence. One or more elements are generated in each of the one or more modified biological sequences using one or more elements in the associated original biological sequence and the corresponding saliency values. The one or more modified biological sequences for each of the original biological sequences are added to the original training set to form an expanded training set.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: September 26, 2023
    Assignee: DEEP GENOMICS INCORPORATED
    Inventors: Brendan John Frey, Andrew Thomas DeLong, Hui Yuan Xiong
  • Patent number: 11681917
    Abstract: Systems and methods for training a neural network or an ensemble of neural networks are described. A hyper-parameter that controls the variance of the ensemble predictors is used to address overfitting. For larger values of the hyper-parameter, the predictions from the ensemble have more variance, so there is less overfitting. This technique can be applied to ensemble learning with various cost functions, structures and parameter sharing. A cost function is provided and a set of techniques for learning are described.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: June 20, 2023
    Assignee: Deep Genomics Incorporated
    Inventors: Hui Yuan Xiong, Andrew Delong, Brendan Frey
  • Patent number: 11636920
    Abstract: We describe systems and methods for generating and training convolutional neural networks using biological sequences and relevance scores derived from structural, biochemical, population and evolutionary data. The convolutional neural networks take as input biological sequences and additional information and output molecular phenotypes. Biological sequences may include DNA, RNA and protein sequences. Molecular phenotypes may include protein-DNA interactions, protein-RNA interactions, protein-protein interactions, splicing patterns, polyadenylation patterns, and microRNA-RNA interactions, which may be described using numerical, categorical or ordinal attributes. Intermediate layers of the convolutional neural networks are weighted using relevance score sequences, for example, conservation tracks.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: April 25, 2023
    Assignee: Deep Genomics Incorporated
    Inventors: Hui Yuan Xiong, Brendan Frey
  • Publication number: 20210383890
    Abstract: Described herein are systems and methods that receive as input a DNA or RNA sequence, extract features, and apply layers of processing units to compute one ore more condition-specific cell variables, corresponding to cellular quantities measured under different conditions. The system may be applied to a sequence containing a genetic variant, and also to a corresponding reference sequence to determine how much the condition-specific cell variables change because of the variant. The change in the condition-specific cell variables are used to compute a score for how deleterious a variant is, to classify a variant's level of deleteriousness, to prioritize variants for subsequent processing, and to compare a test variant to variants of known deleteriousness.
    Type: Application
    Filed: July 7, 2021
    Publication date: December 9, 2021
    Inventors: Brendan FREY, Michael K. K. LEUNG, Andrew Thomas DELONG, Hui Yuan XIONG, Babak ALIPANAHI, Leo J. LEE, Hannes BRETSCHNEIDER
  • Publication number: 20210133573
    Abstract: Systems and methods for training a neural network or an ensemble of neural networks are described. A hyper-parameter that controls the variance of the ensemble predictors is used to address overfitting. For larger values of the hyper-parameter, the predictions from the ensemble have more variance, so there is less overfitting. This technique can be applied to ensemble learning with various cost functions, structures and parameter sharing. A cost function is provided and a set of techniques for learning are described.
    Type: Application
    Filed: December 3, 2020
    Publication date: May 6, 2021
    Inventors: Hui Yuan Xiong, Andrew Delong, Brendan Frey
  • Patent number: 10885435
    Abstract: Systems and methods for training a neural network or an ensemble of neural networks are described. A hyper-parameter that controls the variance of the ensemble predictors is used to address overfitting. For larger values of the hyper-parameter, the predictions from the ensemble have more variance, so there is less overfitting. This technique can be applied to ensemble learning with various cost functions, structures and parameter sharing. A cost function is provided and a set of techniques for learning are described.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: January 5, 2021
    Assignee: Deep Genomics Incorporated
    Inventors: Hui Yuan Xiong, Andrew Delong, Brendan Frey
  • Publication number: 20200111000
    Abstract: Systems and methods for training a neural network or an ensemble of neural networks are described. A hyper-parameter that controls the variance of the ensemble predictors is used to address overfitting. For larger values of the hyper-parameter, the predictions from the ensemble have more variance, so there is less overfitting. This technique can be applied to ensemble learning with various cost functions, structures and parameter sharing. A cost function is provided and a set of techniques for learning are described.
    Type: Application
    Filed: August 15, 2019
    Publication date: April 9, 2020
    Inventors: Hui Yuan XIONG, Andrew DELONG, Brendan FREY
  • Patent number: 10410118
    Abstract: Systems and methods for training a neural network or an ensemble of neural networks are described. A hyper-parameter that controls the variance of the ensemble predictors is used to address overfitting. For larger values of the hyper-parameter, the predictions from the ensemble have more variance, so there is less overfitting. This technique can be applied to ensemble learning with various cost functions, structures and parameter sharing. A cost function is provided and a set of techniques for learning are described.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: September 10, 2019
    Assignee: Deep Genomics Incorporated
    Inventors: Hui Yuan Xiong, Andrew Delong, Brendan Frey
  • Publication number: 20190252041
    Abstract: Described herein are systems and methods that receive as input a DNA or RNA sequence, extract features, and apply layers of processing units to compute one ore more condition-specific cell variables, corresponding to cellular quantities measured under different conditions. The system may be applied to a sequence containing a genetic variant, and also to a corresponding reference sequence to determine how much the condition-specific cell variables change because of the variant. The change in the condition-specific cell variables are used to compute a score for how deleterious a variant is, to classify a variant's level of deleteriousness, to prioritize variants for subsequent processing, and to compare a test variant to variants of known deleteriousness.
    Type: Application
    Filed: November 20, 2018
    Publication date: August 15, 2019
    Inventors: Brendan Frey, Michael K.K. Leung, Andrew Thomas Delong, Hui Yuan Xiong, Babak Alipanahi, Leo J. Lee, Hannes Bretschneider
  • Publication number: 20190220740
    Abstract: We describe systems and methods for generating and training convolutional neural networks using biological sequences and relevance scores derived from structural, biochemical, population and evolutionary data. The convolutional neural networks take as input biological sequences and additional information and output molecular phenotypes. Biological sequences may include DNA, RNA and protein sequences. Molecular phenotypes may include protein-DNA interactions, protein-RNA interactions, protein-protein interactions, splicing patterns, polyadenylation patterns, and microRNA-RNA interactions, which may be described using numerical, categorical or ordinal attributes. Intermediate layers of the convolutional neural networks are weighted using relevance score sequences, for example, conservation tracks.
    Type: Application
    Filed: December 21, 2018
    Publication date: July 18, 2019
    Inventors: Hui Yuan Xiong, Brendan Frey
  • Publication number: 20190073443
    Abstract: Methods and systems for expanding a training set of one or more original biological sequences are provided. An original training set is obtained, wherein the original training set comprises one or more original biological sequences. Saliency values corresponding to one or more elements in each of the one or more original biological sequences are obtained. For each of the original biological sequences, one or more modified biological sequences are produced and the one or more modified biological sequences are associated with the original biological sequence. One or more elements are generated in each of the one or more modified biological sequences using one or more elements in the associated original biological sequence and the corresponding saliency values. The one or more modified biological sequences for each of the original biological sequences are added to the original training set to form an expanded training set.
    Type: Application
    Filed: November 2, 2018
    Publication date: March 7, 2019
    Inventors: Brendan John Frey, Andrew Thomas DeLong, Hui Yuan Xiong
  • Patent number: 10185803
    Abstract: Described herein are systems and methods that receive as input a DNA or RNA sequence, extract features, and apply layers of processing units to compute one ore more condition-specific cell variables, corresponding to cellular quantities measured under different conditions. The system may be applied to a sequence containing a genetic variant, and also to a corresponding reference sequence to determine how much the condition-specific cell variables change because of the variant. The change in the condition-specific cell variables are used to compute a score for how deleterious a variant is, to classify a variant's level of deleteriousness, to prioritize variants for subsequent processing, and to compare a test variant to variants of known deleteriousness.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: January 22, 2019
    Assignee: DEEP GENOMICS INCORPORATED
    Inventors: Brendan Frey, Michael K. K. Leung, Andrew Thomas Delong, Hui Yuan Xiong, Babak Alipanahi, Leo J. Lee, Hannes Bretschneider
  • Publication number: 20170024642
    Abstract: Systems and methods for training a neural network or an ensemble of neural networks are described. A hyper-parameter that controls the variance of the ensemble predictors is used to address overfitting. For larger values of the hyper-parameter, the predictions from the ensemble have more variance, so there is less overfitting. This technique can be applied to ensemble learning with various cost functions, structures and parameter sharing. A cost function is provided and a set of techniques for learning are described.
    Type: Application
    Filed: March 11, 2016
    Publication date: January 26, 2017
    Inventors: Hui Yuan XIONG, Andrew DELONG, Brendan FREY
  • Publication number: 20160364522
    Abstract: Described herein are systems and methods that receive as input a DNA or RNA sequence, extract features, and apply layers of processing units to compute one ore more condition-specific cell variables, corresponding to cellular quantities measured under different conditions. The system may be applied to a sequence containing a genetic variant, and also to a corresponding reference sequence to determine how much the condition-specific cell variables change because of the variant. The change in the condition-specific cell variables are used to compute a score for how deleterious a variant is, to classify a variant's level of deleteriousness, to prioritize variants for subsequent processing, and to compare a test variant to variants of known deleteriousness.
    Type: Application
    Filed: June 15, 2015
    Publication date: December 15, 2016
    Inventors: Brendan FREY, Michael K.K. LEUNG, Andrew Thomas DELONG, Hui Yuan XIONG, Babak ALIPANAHI, Leo J. LEE, Hannes BRETSCHNEIDER