Patents by Inventor Huihui Ye

Huihui Ye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240103109
    Abstract: The present invention discloses a magnetic resonance fingerprinting imaging method with variable number of echoes, in addition to conventional MRF coding such as changing the excitation pulse angle, the method also introduces the change of the number of echoes, so that quantitative maps of B0, B1+, T1 and T2* can be obtained in a single scan. Further, if the echo time corresponding to the in-phase, opposed-phase and in-phase of water and fat is set for three consecutive echoes, the present invention can also image water and fat, and achieve the accurate quantification of B0, B1+, T1w, T1F, [T2*]w and [T2*]F. Through in vivo experiments and simulations, the effectiveness of the present invention has been proved. Therefore, the present invention can provide multiple information representations for common brain diseases (glioma) and fatty diseases (such as lipoma, fatty liver, etc.), which is conducive to clinical diagnosis and treatment.
    Type: Application
    Filed: November 18, 2022
    Publication date: March 28, 2024
    Inventors: HUIHUI YE, JINMIN XU, HUAFENG LIU
  • Publication number: 20230210446
    Abstract: The disclosure provides a modified EPI sequence for acquiring multi-shot and multi-echo images with interleaved blip-up and blip-down phase encoding; the blip-up and blip-down images are processed by topup in FSL to estimate the inhomogeneous main magnetic field B0 map that causes image distortions; the B0 map is then incorporated into the encoding matrix with a low rank constraint to form a joint reconstruction model; the joint reconstruction model is solved to obtain multiple distortion-free images; and the multiple distortion-free images are matched to dictionary to simultaneous acquire the quantitative T2 (=1/R2) and T2* (=1/R2*) maps. In the phantom and in-vivo measurements, the disclosed method rapidly acquires the comparable quantitative images within one hold-breath (for 20 s) to the conventional mapping method, thus providing important practical application value for evaluation of liver damage, iron level and cancer lesion.
    Type: Application
    Filed: March 13, 2023
    Publication date: July 6, 2023
    Inventors: Huihui YE, Zijing ZHANG, Huafeng LIU
  • Patent number: 11353531
    Abstract: The present disclosure discloses a method for measuring relaxation time of ultrashort echo time magnetic resonance fingerprinting. In the method, semi-pulse excitation and semi-projection readout are adopted to shorten echo time (TE) to achieve acquisition of an ultrashort T2 time signal; and image acquisition and reconstruction are based on magnetic resonance fingerprint imaging technology. A TE change mode of sinusoidal fluctuation is introduced, so that distinguishing capability of a magnetic resonance fingerprint signal to short T2 and ultrashort T2 tissues is improved, and multi-parameter quantitative imaging of the short T2 and ultrashort T2 tissues and long T2 tissues is realized.
    Type: Grant
    Filed: May 9, 2020
    Date of Patent: June 7, 2022
    Assignee: ZHEJIANG UNIVERSITY
    Inventors: Hongjian He, Qing Li, Huihui Ye, Xiaozhi Cao, Jianhui Zhong, Qiuping Ding
  • Publication number: 20220057463
    Abstract: The present disclosure discloses a method for measuring relaxation time of ultrashort echo time magnetic resonance fingerprinting. In the method, semi-pulse excitation and semi-projection readout are adopted to shorten echo time (TE) to achieve acquisition of an ultrashort T2 time signal; and image acquisition and reconstruction are based on magnetic resonance fingerprint imaging technology. A TE change mode of sinusoidal fluctuation is introduced, so that distinguishing capability of a magnetic resonance fingerprint signal to short T2 and ultrashort T2 tissues is improved, and multi-parameter quantitative imaging of the short T2 and ultrashort T2 tissues and long T2 tissues is realized.
    Type: Application
    Filed: May 9, 2020
    Publication date: February 24, 2022
    Inventors: Hongjian HE, Qing LI, Huihui YE, Xiaozhi CAO, Jianhui ZHONG, Qiuping DING
  • Patent number: 11009575
    Abstract: Methods for reducing scan time in magnetic resonance imaging (“MRI”), particularly when imaging three-dimensional image volumes, using a simultaneous time-interleaved multislice (“STIMS”) acquisition are described. The unused time in each repetition time (“TR”) period is exploited to provide an additional reduction in encoding time for a three-dimensional acquisition (e.g., a 3D whole brain coverage). Groups of spatially interleaved slices are excited in a single TR, with the excitation and acquisition of the groups of slices being interleaved in time.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: May 18, 2021
    Assignee: The General Hospital Corporation
    Inventors: Berkin Bilgic, Kawin Setsompop, Daniel Polak, Huihui Ye, Lawrence Wald
  • Patent number: 9897675
    Abstract: Magnetic resonance fingerprinting (MRF) with simultaneous multivolume acquisition (SMVA) is described. One example nuclear magnetic resonance (NMR) apparatus includes an NMR logic that repetitively and variably samples (k, t, E) spaces associated with different volumes (e.g., slices) in an object to simultaneously acquire sets of NMR signals that are associated with different points in the (k, t, E) spaces. Sampling is performed with t and/or E varying in a non-constant way. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals and compares the NMR signal evolution to reference signal evolutions. Since different volumes are excited differently, resulting signal evolutions can be acquired simultaneously from the different volumes and NMR parameters may be simultaneously determined for the multiple volumes, which reduces acquisition time and parameter map creation time.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: February 20, 2018
    Assignees: Case Western Reserve University, THE GENERAL HOSPITAL CORPORATION
    Inventors: Kawin Setsompop, Mark Griswold, Huihui Ye, Lawrence Wald, Dan Ma, Yun Jiang
  • Publication number: 20170328971
    Abstract: Methods for reducing scan time in magnetic resonance imaging (“MRI”), particularly when imaging three-dimensional image volumes, using a simultaneous time-interleaved multislice (“STIMS”) acquisition are described. The unused time in each repetition time (“TR”) period is exploited to provide an additional reduction in encoding time for a three-dimensional acquisition (e.g., a 3D whole brain coverage). Groups of spatially interleaved slices are excited in a single TR, with the excitation and acquisition of the groups of slices being interleaved in time.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 16, 2017
    Inventors: Berkin Bilgic, Kawin Setsompop, Daniel Polak, Huihui Ye, Lawrence Wald
  • Publication number: 20150346300
    Abstract: Magnetic resonance fingerprinting (MRF) with simultaneous multivolume acquisition (SMVA) is described. One example nuclear magnetic resonance (NMR) apparatus includes an NMR logic that repetitively and variably samples (k, t, E) spaces associated with different volumes (e.g., slices) in an object to simultaneously acquire sets of NMR signals that are associated with different points in the (k, t, E) spaces. Sampling is performed with t and/or E varying in a non-constant way. The NMR apparatus may also include a signal logic that produces an NMR signal evolution from the NMR signals and compares the NMR signal evolution to reference signal evolutions. Since different volumes are excited differently, resulting signal evolutions can be acquired simultaneously from the different volumes and NMR parameters may be simultaneously determined for the multiple volumes, which reduces acquisition time and parameter map creation time.
    Type: Application
    Filed: May 14, 2015
    Publication date: December 3, 2015
    Inventors: Kawin Setsompop, Mark Griswold, Huihui Ye, Lawrence Wald, Dan Ma, Yun Jiang