Patents by Inventor Hung-Chih Chiang

Hung-Chih Chiang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240114690
    Abstract: A method of forming a three-dimensional (3D) memory device includes: forming, over a substrate, a layer stack having alternating layers of a first conductive material and a first dielectric material; forming trenches extending vertically through the layer stack from an upper surface of the layer stack distal from the substrate to a lower surface of the layer stack facing the substrate; lining sidewalls and bottoms of the trenches with a memory film; forming a channel material over the memory film, the channel material including an amorphous material; filling the trenches with a second dielectric material after forming the channel material; forming memory cell isolation regions in the second dielectric material; forming source lines (SLs) and bit lines (BLs) that extend vertically in the second dielectric material on opposing sides of the memory cell isolation regions; and crystallizing first portions of the channel material after forming the SLs and BLs.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: TsuChing Yang, Hung-Chang Sun, Kuo Chang Chiang, Sheng-Chih Lai, Yu-Wei Jiang
  • Patent number: 11942543
    Abstract: A high-voltage semiconductor device structure is provided. The high-voltage semiconductor device structure includes a semiconductor substrate, a source ring in the semiconductor substrate, and a drain region in the semiconductor substrate. The high-voltage semiconductor device structure also includes a doped ring surrounding sides and a bottom of the source ring and a well region surrounding sides and bottoms of the drain region and the doped ring. The well region has a conductivity type opposite to that of the doped ring. The high-voltage semiconductor device structure further includes a conductor electrically connected to the drain region and extending over and across a periphery of the well region. In addition, the high-voltage semiconductor device structure includes a shielding element ring between the conductor and the semiconductor substrate. The shielding element ring extends over and across the periphery of the well region.
    Type: Grant
    Filed: June 29, 2022
    Date of Patent: March 26, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Chou Lin, Yi-Cheng Chiu, Karthick Murukesan, Yi-Min Chen, Shiuan-Jeng Lin, Wen-Chih Chiang, Chen-Chien Chang, Chih-Yuan Chan, Kuo-Ming Wu, Chun-Lin Tsai
  • Publication number: 20240088291
    Abstract: A transistor includes an insulating layer, a source region, a drain region, a channel layer, a ferroelectric layer, and a gate electrode. The source region and the drain region are respectively disposed on and in physical contact with two opposite sidewalls of the insulating layer. A thickness of the source region, a thickness of the drain region, and a thickness of the insulating layer are substantially the same. The channel layer is disposed on the insulating layer, the source region, and the drain region. The ferroelectric layer is disposed over the channel layer. The gate electrode is disposed on the ferroelectric layer.
    Type: Application
    Filed: November 15, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Chang Sun, Sheng-Chih Lai, Yu-Wei Jiang, Kuo-Chang Chiang, TsuChing Yang, Feng-Cheng Yang, Chung-Te Lin
  • Publication number: 20230196523
    Abstract: Image dewarping includes capturing a source image from a camera, selecting an input row of pixels from the source image, if the input row of pixels comprises a plurality of input pixels in a region of interest in the source image, storing the plurality of input pixels to a memory to generate an input segment of pixels, when a plurality of pixels required to generate an output row of pixels are all stored in the memory, reading from the memory the plurality of pixels corresponding to the output row of pixels, and performing coordinate transformation on the plurality of pixels to generate the output row of pixels, and when coordinate transformation has been completed on the plurality of pixels, releasing from the memory an input segment of pixels of the plurality of input segments of pixels that does not correspond to other output rows of pixels.
    Type: Application
    Filed: February 24, 2022
    Publication date: June 22, 2023
    Applicant: WELTREND SEMICONDUCTOR INC.
    Inventors: Hsuan-Ying Chen, Hung-Chih Chiang, Ta Hsien, Te-Wei Hsu, Meng-Che Tsai
  • Patent number: 11583169
    Abstract: An optical fiber scanning probe includes a rotor and at least one optical fiber. The rotor includes a torque rope rotatable about its central axis. The optical fiber is disposed on the rotor and eccentric relative to the torque rope. A central axis of the optical fiber is substantially parallel to the central axis of the torque rope. When the torque rope rotates about its central axis, the rotor brings a free end of the optical fiber to scan along an arc path.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: February 21, 2023
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chun-Chieh Huang, Yuan Chin Lee, Chi Shen Chang, Hung Chih Chiang
  • Patent number: 11483493
    Abstract: A method of image conversion includes selecting a set of pixels from a source image, storing the set of pixels in a memory, determining whether the set of pixels includes at least one pixel requiring coordinate conversion by querying a predetermined mapping table, if the set of pixels includes the at least one pixel requiring coordinate conversion, converting the coordinates of the at least one pixel, and after converting the coordinates of the at least one pixel, removing the set of pixels from the memory.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: October 25, 2022
    Assignee: WELTREND SEMICONDUCTOR INC.
    Inventors: Hsuan-Ying Chen, Chun-Ting Lin, Hsiu-Yuan Fan, Chi-Cheng Cheng, Hung-Chih Chiang
  • Publication number: 20220046185
    Abstract: A method of image conversion includes selecting a set of pixels from a source image, storing the set of pixels in a memory, determining whether the set of pixels includes at least one pixel requiring coordinate conversion by querying a predetermined mapping table, if the set of pixels includes the at least one pixel requiring coordinate conversion, converting the coordinates of the at least one pixel, and after converting the coordinates of the at least one pixel, removing the set of pixels from the memory.
    Type: Application
    Filed: November 20, 2020
    Publication date: February 10, 2022
    Inventors: Hsuan-Ying Chen, Chun-Ting Lin, Hsiu-Yuan Fan, Chi-Cheng Cheng, Hung-Chih Chiang
  • Publication number: 20210186313
    Abstract: An optical fiber scanning probe includes a rotor and at least one optical fiber. The rotor includes a torque rope rotatable about its central axis. The optical fiber is disposed on the rotor and eccentric relative to the torque rope. A central axis of the optical fiber is substantially parallel to the central axis of the torque rope. When the torque rope rotates about its central axis, the rotor brings a free end of the optical fiber to scan along an arc path.
    Type: Application
    Filed: August 7, 2020
    Publication date: June 24, 2021
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chun-Chieh HUANG, Yuan Chin LEE, Chi Shen CHANG, Hung Chih CHIANG
  • Patent number: 11026581
    Abstract: An optical probe for detecting a biological tissue includes a surface imaging module and a tomography capturing module. The surface imaging module captures and creates a surface image of the biological tissue, and at least includes a light source emitting a first detecting light. The tomography capturing module captures a tomography image of the biological tissue and receives a second detecting light. The first detecting light passes via a first optical path from the light source to an imaging sensor through the biological tissue, a telecentric lens, a first optical mirror, and a lens assembly in sequence. The second detecting light passes via a second optical path from a first collimator to the first collimator through a scanner, the first optical mirror, the telecentric lens, the biological tissue, the telecentric lens, the first optical mirror, the scanner, and the first collimator in sequence.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: June 8, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chy-Lin Wang, Yuan-Chin Lee, Chun-Chieh Huang, Hung-Chih Chiang, Chih-Ming Cheng, Shuen-Chen Chen
  • Patent number: 10973579
    Abstract: An optical system adapted to detect an object including a beam splitting and combing element, a catheter, a focusing element, a deformation detecting module, and an object detecting module is provided. The catheter sleeves outside an optical fiber, and the optical fiber has at least one fiber Bragg gratings. The deformation detecting module and the object detecting module are coupled to the beam splitting and combing element. A first light is reflected by the at least one fiber Bragg gratings and then transmitted to the deformation detecting module. A second light is transmitted to and reflected by the object, so as to be transmitted to the object detecting module. A first wavelength range of the first light is different from a second wavelength range of the second light.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: April 13, 2021
    Assignee: Industrial Technology Research Institute
    Inventors: Yi-Cheng Liu, Yuan-Chin Lee, De-Yi Chiou, Hung-Chih Chiang
  • Patent number: 10890429
    Abstract: An automatic calibration optical interferometer comprises: a light source; an optical interference assembly, which divides a low coherent light into a first and a second incident light; an optical sampling assembly, with a first end receiving the first incident light and a partially reflective window at the second end being configured to divide the first incident light into a first reflected light and a first penetrating light configured to be emitted to the test sample; an optical reference assembly, with a reference mirror and an actuator, wherein the optical sampling assembly emits the second incident light to the reference mirror to generate a second reflected light, and the actuator moves the reference mirror; a polychromator, which outputs a displacement signal according to an optical path difference variation between the first and second reflected lights; and a displacement controller, which controls the actuator according to the displacement signal.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: January 12, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hung Chih Chiang, Cheng Yi Chang, Ting Wei Chang, Chi Shen Chang
  • Patent number: 10872257
    Abstract: A barcode detection method includes obtaining a gradient of each pixel in an image, generating a gradient phase and a gradient magnitude of each pixel according to the gradient, and binarizing the gradient magnitude of each pixel to generate a binary image, generating a sliding window on the image, sampling the binary image vertically and horizontally within the sliding window to generate the numbers of grayscale value variations in the vertical and horizontal directions, locating the most intensive flip region according to the grayscale variations in the vertical and horizontal directions, locating a core barcode region according to the most intensive flip region, capturing the gradient phase of the pixels in the core barcode region to generate a gradient phase distribution, generating a barcode format detection result according to the gradient phase distribution, and locating the barcode region according to the barcode format detection result.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: December 22, 2020
    Assignee: WELTREND SEMICONDUCTOR INC.
    Inventors: Hsuan-Ying Chen, Chien-Ming Chen, Ming-Feng Wu, Hung-Chih Chiang
  • Publication number: 20200226402
    Abstract: A barcode detection method includes obtaining a gradient of each pixel in an image, generating a gradient phase and a gradient magnitude of each pixel according to the gradient, and binarizing the gradient magnitude of each pixel to generate a binary image, generating a sliding window on the image, sampling the binary image vertically and horizontally within the sliding window to generate the numbers of grayscale value variations in the vertical and horizontal directions, locating the most intensive flip region according to the grayscale variations in the vertical and horizontal directions, locating a core barcode region according to the most intensive flip region, capturing the gradient phase of the pixels in the core barcode region to generate a gradient phase distribution, generating a barcode format detection result according to the gradient phase distribution, and locating the barcode region according to the barcode format detection result.
    Type: Application
    Filed: March 31, 2020
    Publication date: July 16, 2020
    Inventors: Hsuan-Ying Chen, Chien-Ming Chen, Ming-Feng Wu, Hung-Chih Chiang
  • Publication number: 20200205897
    Abstract: An optical system adapted to detect an object including a beam splitting and combing element, a catheter, a focusing element, a deformation detecting module, and an object detecting module is provided. The catheter sleeves outside an optical fiber, and the optical fiber has at least one fiber Bragg gratings. The deformation detecting module and the object detecting module are coupled to the beam splitting and combing element. A first light is reflected by the at least one fiber Bragg gratings and then transmitted to the deformation detecting module. A second light is transmitted to and reflected by the object, so as to be transmitted to the object detecting module. A first wavelength range of the first light is different from a second wavelength range of the second light.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 2, 2020
    Applicant: Industrial Technology Research Institute
    Inventors: Yi-Cheng Liu, Yuan-Chin Lee, De-Yi Chiou, Hung-Chih Chiang
  • Publication number: 20200208958
    Abstract: An automatic calibration optical interferometer comprises: a light source; an optical interference assembly, which divides a low coherent light into a first and a second incident light; an optical sampling assembly, with a first end receiving the first incident light and a partially reflective window at the second end being configured to divide the first incident light into a first reflected light and a first penetrating light configured to be emitted to the test sample; an optical reference assembly, with a reference mirror and an actuator, wherein the optical sampling assembly emits the second incident light to the reference mirror to generate a second reflected light, and the actuator moves the reference mirror; a polychromator, which outputs a displacement signal according to an optical path difference variation between the first and second reflected lights; and a displacement controller, which controls the actuator according to the displacement signal.
    Type: Application
    Filed: April 9, 2019
    Publication date: July 2, 2020
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Hung Chih CHIANG, Cheng Yi CHANG, Ting Wei CHANG, Chi Shen CHANG
  • Patent number: 10650204
    Abstract: A barcode detection method includes acquiring an image by a camera, acquiring a horizontal gradient and a vertical gradient of each pixel of the image within a region, generating a gradient phase and gradient magnitude of each pixel according to the horizontal gradient and the vertical gradient, performing a binarization process to the gradient magnitude of each pixel of the image within the region for generating a binarized image, vertically and horizontally sampling the binarized image for generating the gray level flip count in a vertical direction and a horizontal direction, locating an image region of a barcode according to the gray level flip count in the vertical direction and the horizontal direction, acquiring a plurality of gradient phases of all pixels within the image region for generating a gradient phase distribution, and generating a barcode format detection result according to the gradient phase distribution.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: May 12, 2020
    Assignee: WELTREND SEMICONDUCTOR INC.
    Inventors: Hsuan-Ying Chen, Hung-Chih Chiang, Ian Hsu
  • Publication number: 20190377918
    Abstract: A barcode detection method includes acquiring an image by a camera, acquiring a horizontal gradient and a vertical gradient of each pixel of the image within a region, generating a gradient phase and gradient magnitude of each pixel according to the horizontal gradient and the vertical gradient, performing a binarization process to the gradient magnitude of each pixel of the image within the region for generating a binarized image, vertically and horizontally sampling the binarized image for generating the gray level flip count in a vertical direction and a horizontal direction, locating an image region of a barcode according to the gray level flip count in the vertical direction and the horizontal direction, acquiring a plurality of gradient phases of all pixels within the image region for generating a gradient phase distribution, and generating a barcode format detection result according to the gradient phase distribution.
    Type: Application
    Filed: August 14, 2018
    Publication date: December 12, 2019
    Inventors: Hsuan-Ying Chen, Hung-Chih Chiang, Ian Hsu
  • Patent number: 10422744
    Abstract: Provided is an interferometer for inspecting a test sample. The interferometer includes: a light source for providing a light beam; a beam splitting element, splitting the light beam into first and second incident light, wherein the first incident light is reflected by the test sample into first reflection light; a reflecting element, reflecting the second incident light into second reflection light; an optical detection element, receiving the first and the second reflection light into an interference signal; and a signal processing module, coupled to the optical detection element, for performing spatial differential calculation on the interference signal to generate a demodulation image of the test sample.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: September 24, 2019
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ting-Wei Chang, Yuan-Chin Lee, Chi-Shen Chang, Hung-Chih Chiang, Shuen-Chen Chen
  • Patent number: 10321054
    Abstract: A panoramic image stitching method includes acquiring a plurality of first images, converting camera image plane coordinates of each first image of the plurality of first images into virtual image plane coordinates for generating a second image according a world coordinate system, identifying a plurality of feature points on the second image, calibrating coordinates of the plurality of feature points on the second image, generating a calibrated second image according to calibrated coordinates of the plurality of feature points on the second image, and stitching a plurality of calibrated second images for generating a panoramic image.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: June 11, 2019
    Assignee: WELTREND SEMICONDUCTOR INC.
    Inventors: Hsuan-Ying Chen, Hung-Chih Chiang, Shui-Chin Yeh, Ming-Liang Chen
  • Patent number: 10255657
    Abstract: An image perspective conversion method includes acquiring a first image, partitioning a predetermined region on the first image into a plurality of polygonal sub-regions, acquiring a plurality of first coordinates corresponding to the plurality of polygonal sub-regions, converting the plurality of first coordinates into a plurality of second coordinates according to a world coordinate system, and interpolating a plurality of pixels among the plurality of second coordinates for generating a second image.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: April 9, 2019
    Assignee: WELTREND SEMICONDUCTOR INC.
    Inventors: Hsuan-Ying Chen, Hung-Chih Chiang, Shui-Chin Yeh, Chi-Cheng Cheng