Patents by Inventor Hung-Chin Chung

Hung-Chin Chung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240021729
    Abstract: A semiconductor device includes a first fin, a second fin, and a third fin protruding above a substrate, where the third fin is between the first fin and the second fin; a gate dielectric layer over the first fin, the second fin, and the third fin; a first work function layer over and contacting the gate dielectric layer, where the first work function layer extends along first sidewalls and a first upper surface of the first fin; a second work function layer over and contacting the gate dielectric layer, where the second work function layer extends along second sidewalls and a second upper surface of the second fin, where the first work function layer and the second work function layer comprise different materials; and a first gate electrode over the first fin, a second gate electrode over the second fin, and a third gate electrode over the third fin.
    Type: Application
    Filed: July 24, 2023
    Publication date: January 18, 2024
    Inventors: Chun-Neng Lin, Ming-Hsi Yeh, Hung-Chin Chung, Hsin-Yun Hsu
  • Publication number: 20230386926
    Abstract: A dummy gate electrode and a dummy gate dielectric are removed to form a recess between adjacent gate spacers. A gate dielectric is deposited in the recess, and a barrier layer is deposited over the gate dielectric. A first work function layer is deposited over the barrier layer. A first anti-reaction layer is formed over the first work function layer, the first anti-reaction layer reducing oxidation of the first work function layer. A fill material is deposited over the first anti-reaction layer.
    Type: Application
    Filed: August 2, 2023
    Publication date: November 30, 2023
    Inventors: Chia-Ching Lee, Hsin-Han Tsai, Shih-Hang Chiu, Tsung-Ta Tang, Chung-Chiang Wu, Hung-Chin Chung, Hsien-Ming Lee, Da-Yuan Lee, Jian-Hao Chen, Chien-Hao Chen, Kuo-Feng Yu, Chia-Wei Chen, Chih-Yu Hsu
  • Publication number: 20230369132
    Abstract: The present disclosure provides a semiconductor device with a profiled work-function metal gate electrode. The semiconductor structure includes a metal gate structure formed in an opening of an insulating layer. The metal gate structure includes a gate dielectric layer, a barrier layer, a work-function metal layer between the gate dielectric layer and the barrier layer and a work-function adjustment layer over the barrier layer, wherein the work-function metal has an ordered grain orientation. The present disclosure also provides a method of making a semiconductor device with a profiled work-function metal gate electrode.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Da-Yuan LEE, Hung-Chin CHUNG, Hsien-Ming LEE, Kuan-Ting LIU, Syun-Ming JANG, Weng CHANG, Wei-Jen LO
  • Patent number: 11804409
    Abstract: The present disclosure provides a semiconductor device with a profiled work-function metal gate electrode. The semiconductor structure includes a metal gate structure formed in an opening of an insulating layer. The metal gate structure includes a gate dielectric layer, a barrier layer, a work-function metal layer between the gate dielectric layer and the barrier layer and a work-function adjustment layer over the barrier layer, wherein the work-function metal has an ordered grain orientation. The present disclosure also provides a method of making a semiconductor device with a profiled work-function metal gate electrode.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: October 31, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Da-Yuan Lee, Hung-Chin Chung, Hsien-Ming Lee, Kuan-Ting Liu, Syun-Ming Jang, Weng Chang, Wei-Jen Lo
  • Publication number: 20230343648
    Abstract: An improved work function layer and a method of forming the same are disclosed. In an embodiment, the method includes forming a semiconductor fin extending from a substrate; depositing a dielectric layer over the semiconductor fin; depositing a first work function layer over the dielectric layer; and exposing the first work function layer to a metastable plasma of a first reaction gas, a metastable plasma of a generation gas, and a metastable plasma of a second reaction gas, the first reaction gas being different from the second reaction gas.
    Type: Application
    Filed: June 30, 2023
    Publication date: October 26, 2023
    Inventors: Shao-Jyun Wu, Hung-Chi Wu, Chia-Ching Lee, Pin-Hsuan Yeh, Hung-Chin Chung, Hsien-Ming Lee, Chien-Hao Chen, Sheng-Liang Pan, Huan-Just Lin
  • Patent number: 11735481
    Abstract: An improved work function layer and a method of forming the same are disclosed. In an embodiment, the method includes forming a semiconductor fin extending from a substrate; depositing a dielectric layer over the semiconductor fin; depositing a first work function layer over the dielectric layer; and exposing the first work function layer to a metastable plasma of a first reaction gas, a metastable plasma of a generation gas, and a metastable plasma of a second reaction gas, the first reaction gas being different from the second reaction gas.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: August 22, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shao-Jyun Wu, Hung-Chi Wu, Chia-Ching Lee, Pin-Hsuan Yeh, Hung-Chin Chung, Hsien-Ming Lee, Chien-Hao Chen, Sheng-Liang Pan, Huan-Just Lin
  • Publication number: 20230122022
    Abstract: A structure includes a semiconductor substrate including a first semiconductor region and a second semiconductor region, a first transistor in the first semiconductor region, and a second transistor in the second semiconductor region. The first transistor includes a first gate dielectric over the first semiconductor region, a first work function layer over and contacting the first gate dielectric, and a first conductive region over the first work function layer. The second transistor includes a second gate dielectric over the second semiconductor region, a second work function layer over and contacting the second gate dielectric, wherein the first work function layer and the second work function layer have different work functions, and a second conductive region over the second work function layer.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 20, 2023
    Inventors: Kuan-Chang Chiu, Chia-Ching Lee, Chien-Hao Chen, Hung-Chin Chung, Hsien-Ming Lee, Chi On Chui, Hsuan-Yu Tung, Chung-Chiang Wu
  • Patent number: 11538805
    Abstract: A structure includes a semiconductor substrate including a first semiconductor region and a second semiconductor region, a first transistor in the first semiconductor region, and a second transistor in the second semiconductor region. The first transistor includes a first gate dielectric over the first semiconductor region, a first work function layer over and contacting the first gate dielectric, and a first conductive region over the first work function layer. The second transistor includes a second gate dielectric over the second semiconductor region, a second work function layer over and contacting the second gate dielectric, wherein the first work function layer and the second work function layer have different work functions, and a second conductive region over the second work function layer.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: December 27, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Kuan-Chang Chiu, Chia-Ching Lee, Chien-Hao Chen, Hung-Chin Chung, Hsien-Ming Lee, Chi On Chui, Hsuan-Yu Tung, Chung-Chiang Wu
  • Publication number: 20220359296
    Abstract: A dummy gate electrode and a dummy gate dielectric are removed to form a recess between adjacent gate spacers. A gate dielectric is deposited in the recess, and a barrier layer is deposited over the gate dielectric. A first work function layer is deposited over the barrier layer. A first anti-reaction layer is formed over the first work function layer, the first anti-reaction layer reducing oxidation of the first work function layer. A fill material is deposited over the first anti-reaction layer.
    Type: Application
    Filed: July 21, 2022
    Publication date: November 10, 2022
    Inventors: Chia-Ching Lee, Hsin-Han Tsai, Shih-Hang Chiu, Tsung-Ta Tang, Chung-Chiang Wu, Hung-Chin Chung, Hsien-Ming Lee, Da-Yuan Lee, Jian-Hao Chen, Chien-Hao Chen, Kuo-Feng Yu, Chia-Wei Chen, Chih-Yu Hsu
  • Publication number: 20220336619
    Abstract: A semiconductor device and method of manufacture are provided. In some embodiments a treatment process is utilized to treat a work function layer. The treatment prevents excessive oxidation of the work function layer during subsequent processing steps, such as application of a subsequent photoresist material, thereby allowing the work function layer to be thinner than otherwise.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 20, 2022
    Inventors: Chia-Ching Lee, Hung-Chin Chung, Chung-Chiang Wu, Hsuan-Yu Tung, Kuan-Chang Chiu, Chien-Hao Chen, Chi On Chui
  • Publication number: 20220328683
    Abstract: A semiconductor device includes a first fin, a second fin, and a third fin protruding above a substrate, where the third fin is between the first fin and the second fin; a gate dielectric layer over the first fin, the second fin, and the third fin; a first work function layer over and contacting the gate dielectric layer, where the first work function layer extends along first sidewalls and a first upper surface of the first fin; a second work function layer over and contacting the gate dielectric layer, where the second work function layer extends along second sidewalls and a second upper surface of the second fin, where the first work function layer and the second work function layer comprise different materials; and a first gate electrode over the first fin, a second gate electrode over the second fin, and a third gate electrode over the third fin.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 13, 2022
    Inventors: Chun-Neng Lin, Ming-Hsi Yeh, Hung-Chin Chung, Hsin-Yun Hsu
  • Patent number: 11437280
    Abstract: A dummy gate electrode and a dummy gate dielectric are removed to form a recess between adjacent gate spacers. A gate dielectric is deposited in the recess, and a barrier layer is deposited over the gate dielectric. A first work function layer is deposited over the barrier layer. A first anti-reaction layer is formed over the first work function layer, the first anti-reaction layer reducing oxidation of the first work function layer. A fill material is deposited over the first anti-reaction layer.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: September 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Ching Lee, Hsin-Han Tsai, Shih-Hang Chiu, Tsung-Ta Tang, Chung-Chiang Wu, Hung-Chin Chung, Hsien-Ming Lee, Da-Yuan Lee, Jian-Hao Chen, Chien-Hao Chen, Kuo-Feng Yu, Chia-Wei Chen, Chih-Yu Hsu
  • Publication number: 20220262685
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Publication number: 20220238715
    Abstract: A device includes a semiconductor fin, and a gate stack on sidewalls and a top surface of the semiconductor fin. The gate stack includes a high-k dielectric layer, a work-function layer overlapping a bottom portion of the high-k dielectric layer, and a blocking layer overlapping a second bottom portion of the work-function layer. A low-resistance metal layer overlaps and contacts the work-function layer and the blocking layer. The low-resistance metal layer has a resistivity value lower than second resistivity values of both of the work-function layer and the blocking layer. A gate spacer contacts a sidewall of the gate stack.
    Type: Application
    Filed: April 11, 2022
    Publication date: July 28, 2022
    Inventors: Chung-Chiang Wu, Po-Cheng Chen, Kuo-Chan Huang, Hung-Chin Chung, Hsien-Ming Lee, Chien-Hao Chen
  • Patent number: 11387344
    Abstract: A semiconductor device and method of manufacture are provided. In some embodiments a treatment process is utilized to treat a work function layer. The treatment prevents excessive oxidation of the work function layer during subsequent processing steps, such as application of a subsequent photoresist material, thereby allowing the work function layer to be thinner than otherwise.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: July 12, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chia-Ching Lee, Hung-Chin Chung, Chung-Chiang Wu, Hsuan-Yu Tung, Kuan-Chang Chiu, Chien-Hao Chen, Chi On Chui
  • Patent number: 11380793
    Abstract: A semiconductor device includes a first fin, a second fin, and a third fin protruding above a substrate, where the third fin is between the first fin and the second fin; a gate dielectric layer over the first fin, the second fin, and the third fin; a first work function layer over and contacting the gate dielectric layer, where the first work function layer extends along first sidewalls and a first upper surface of the first fin; a second work function layer over and contacting the gate dielectric layer, where the second work function layer extends along second sidewalls and a second upper surface of the second fin, where the first work function layer and the second work function layer comprise different materials; and a first gate electrode over the first fin, a second gate electrode over the second fin, and a third gate electrode over the third fin.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: July 5, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Neng Lin, Ming-Hsi Yeh, Hung-Chin Chung, Hsin-Yun Hsu
  • Patent number: 11322411
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: May 3, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Patent number: 11302818
    Abstract: A device includes a semiconductor fin, and a gate stack on sidewalls and a top surface of the semiconductor fin. The gate stack includes a high-k dielectric layer, a work-function layer overlapping a bottom portion of the high-k dielectric layer, and a blocking layer overlapping a second bottom portion of the work-function layer. A low-resistance metal layer overlaps and contacts the work-function layer and the blocking layer. The low-resistance metal layer has a resistivity value lower than second resistivity values of both of the work-function layer and the blocking layer. A gate spacer contacts a sidewall of the gate stack.
    Type: Grant
    Filed: September 16, 2019
    Date of Patent: April 12, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Chiang Wu, Po-Cheng Chen, Kuo-Chan Huang, Hung-Chin Chung, Hsien-Ming Lee, Chien-Hao Chen
  • Patent number: 11302582
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: April 12, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Publication number: 20210407995
    Abstract: A structure includes a semiconductor substrate including a first semiconductor region and a second semiconductor region, a first transistor in the first semiconductor region, and a second transistor in the second semiconductor region. The first transistor includes a first gate dielectric over the first semiconductor region, a first work function layer over and contacting the first gate dielectric, and a first conductive region over the first work function layer. The second transistor includes a second gate dielectric over the second semiconductor region, a second work function layer over and contacting the second gate dielectric, wherein the first work function layer and the second work function layer have different work functions, and a second conductive region over the second work function layer.
    Type: Application
    Filed: November 4, 2020
    Publication date: December 30, 2021
    Inventors: Kuan-Chang Chiu, Chia-Ching Lee, Chien-Hao Chen, Hung-Chin Chung, Hsien-Ming Lee, Chi On Chui, Hsuan-Yu Tung, Chung-Chiang Wu