Patents by Inventor Hwan J. Jeong

Hwan J. Jeong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9052494
    Abstract: An optical system may include an objective having at least four mirrors including an outermost mirror with aspect ratio <20:1 and focusing optics including a refractive optical element. The objective provides imaging at numerical aperture >0.7, central obscuration <35% in pupil. An objective may have two or more mirrors, one with a refractive module that seals off an outermost mirror's central opening. A broad band imaging system may include one objective and two or more imaging paths that provide imaging at numerical aperture >0.7 and field of view >0.8 mm. An optical imaging system may comprise an objective and two or more imaging paths. The imaging paths may provide two or more simultaneous broadband images of a sample in two or more modes. The modes may have different illumination and/or collection pupil apertures or different pixel sizes at the sample.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: June 9, 2015
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Shiow-Hwei Hwang, Gregory L. Kirk, Hwan J. Jeong, David Shafer, Russel Hudyma
  • Publication number: 20150043803
    Abstract: Overlay measurement systems and methods are disclosed that control the relative phase between the scattered and specular components of light to amplify weak optical signals before detection. The systems and methods utilize model-based regressional image processing to determine overlay errors accurately even in the presence of inter-pattern interference.
    Type: Application
    Filed: July 11, 2014
    Publication date: February 12, 2015
    Inventor: Hwan J. Jeong
  • Patent number: 8817273
    Abstract: A dark field diffraction based overlay metrology device illuminates an overlay target that has at least three pads for an axis, the three pads having different programmed offsets. The overlay target may be illuminated using two obliquely incident beams of light from opposite azimuth angles or using normally incident light. Two dark field images of the overlay target are collected using ±1st diffraction orders to produce at least six independent signals. For example, the +1st diffraction order may be collected from one obliquely incident beam of light and the ?1st diffraction order may be collected from the other obliquely incident beam of light. Alternatively, the ±1st diffraction orders may be separately detected from the normally incident light to produce the two dark field images of the overlay target. The six independent signals from the overlay target are used to determine an overlay error for the sample along the axis.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: August 26, 2014
    Assignee: Nanometrics Incorporated
    Inventors: Hwan J. Jeong, Silvio J. Rabello, Thomas Andre Casavant
  • Patent number: 8642232
    Abstract: Direct-write lithography apparatus and methods are disclosed in which a transducer image and an image of crossed interference fringe patterns are superimposed on a photoresist layer supported by a substrate. The transducer image has an exposure wavelength and contains bright spots, each corresponding to an activated pixel. The interference image has an inhibition wavelength and contains dark spots where the null points in the crossed interference fringes coincide. The dark spots are aligned with and trim the peripheries of the corresponding bright spot to form sub-resolution photoresist pixels having a size smaller than would be formed in the absence of the dark spots.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: February 4, 2014
    Assignee: Periodic Structures, Inc.
    Inventors: David A. Markle, Rudolf H. Hendel, John S. Petersen, Hwan J. Jeong
  • Publication number: 20130286179
    Abstract: Microscope apparatus and methods for imaging an object with a resolution beyond the Abbe limit are disclosed. The apparatus employs an object selectively patterned with a fluorescing material that is induced to fluoresce with one wavelength and inhibited from fluorescing with a second wavelength. Two orthogonal interference-fringe patterns are generated from four diffracted light beams of an inhibiting wavelength and superimposed on the object along with light that induces fluorescence. The interference-pattern image allows only sub-resolution-sized emission areas of the object to fluoresce. Multiple images of the fluorescing object are obtained, each corresponding to a slightly different position of the fringe patterns on the substrate. Each image is processed to yield a sparsely sampled super-resolution image. Multiple sparse images are interwoven to form a complete super-resolution image of the object.
    Type: Application
    Filed: April 26, 2013
    Publication date: October 31, 2013
    Applicant: Periodic Structures, Inc.
    Inventors: David A. Markle, Hwan J. Jeong, John S. Petersen
  • Publication number: 20130278942
    Abstract: A dark field diffraction based overlay metrology device illuminates an overlay target that has at least three pads for an axis, the three pads having different programmed offsets. The overlay target may be illuminated using two obliquely incident beams of light from opposite azimuth angles or using normally incident light. Two dark field images of the overlay target are collected using ±1st diffraction orders to produce at least six independent signals. For example, the +1st diffraction order may be collected from one obliquely incident beam of light and the ?1st diffraction order may be collected from the other obliquely incident beam of light. Alternatively, the ±1st diffraction orders may be separately detected from the normally incident light to produce the two dark field images of the overlay target. The six independent signals from the overlay target are used to determine an overlay error for the sample along the axis.
    Type: Application
    Filed: April 24, 2012
    Publication date: October 24, 2013
    Applicant: Nanometrics Incorporated
    Inventors: Hwan J. Jeong, Silvio J. Rabello, Thomas Andre Casavant
  • Patent number: 8559014
    Abstract: High-resolution, common-path interferometric imaging systems and methods are described, wherein a light source generates and directs light toward a sample from different directions. An optical imaging system collects the resultant scattered and unscattered components. A variable phase shifting system adjusts the relative phase of the components. The interfered components are sensed by an image sensing system. The process is repeated multiple times with different phase shifts to form corresponding multiple electronic signals representative of raw sample images, which are processed by a signal processor to form a processed image. Multiple processed images, each corresponding to a different illumination azimuth angle, are combined to extend the system resolution.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: October 15, 2013
    Inventors: Hwan J. Jeong, David A. Markle
  • Publication number: 20130155399
    Abstract: An optical system may include an objective having at least four mirrors including an outermost mirror with aspect ratio <20:1 and focusing optics including a refractive optical element. The objective provides imaging at numerical aperture >0.7, central obscuration <35% in pupil. An objective may have two or more mirrors, one with a refractive module that seals off an outermost mirror's central opening. A broad band imaging system may include one objective and two or more imaging paths that provide imaging at numerical aperture >0.7 and field of view >0.8 mm. An optical imaging system may comprise an objective and two or more imaging paths. The imaging paths may provide two or more simultaneous broadband images of a sample in two or more modes. The modes may have different illumination and/or collection pupil apertures or different pixel sizes at the sample.
    Type: Application
    Filed: March 30, 2010
    Publication date: June 20, 2013
    Applicant: KLA-Tencor Corporation
    Inventors: Shiow-Hwei Hwang, Gregory L. Kirk, Hwan J. Jeong, David Shafer, Russell Hudyma
  • Publication number: 20110280038
    Abstract: Illumination systems and methods that utilize the higher or outer portions of the optical solid-angle space to increase the illumination intensity are disclosed. The illumination systems and methods include introducing illumination light through at least one side surface of a transparent slide that operably supports a sample on its top surface. The light fills at least a portion of the optical solid-angle space between 1 and n, and extends out to n. Light from the filled portion of the optical solid-angle space illuminates the sample through the top surface of the transparent slide. The disclosed illumination systems and methods are suitable for use in applications, such as dark-field imaging, fluorescence imaging, Raman spectroscopy, DNA analysis and like applications requiring high-intensity illumination.
    Type: Application
    Filed: May 4, 2011
    Publication date: November 17, 2011
    Inventor: Hwan J. Jeong
  • Publication number: 20110242528
    Abstract: An optical system may include an objective having at least four mirrors including an outermost mirror with aspect ratio <20:1 and focusing optics including a refractive optical element. The objective provides imaging at numerical aperture >0.7, central obscuration <35% in pupil. An objective may have two or more mirrors, one with a refractive module that seals off an outermost mirror's central opening. A broad band imaging system may include one objective and two or more imaging paths that provide imaging at numerical aperture >0.7 and field of view >0.8 mm. An optical imaging system may comprise an objective and two or more imaging paths. The imaging paths may provide two or more simultaneous broadband images of a sample in two or more modes. The modes may have different illumination and/or collection pupil apertures or different pixel sizes at the sample.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: KLA-Tencor Corporation
    Inventors: Shiow-Hwei Hwang, Gregory L. Kirk, Hwan J. Jeong, David Shafer, Russell Hudyma
  • Patent number: 7986412
    Abstract: Systems and methods for using common-path interferometric imaging for defect detection and classification are described. An illumination source generates and directs coherent light toward the sample. An optical imaging system collects light reflected or transmitted from the sample including a scattered component and a specular component that is predominantly undiffracted by the sample. A variable phase controlling system is used to adjust the relative phase of the scattered component and the specular component so as to change the way they interfere at the image plane. The resultant signal is compared to a reference signal for the same location on the sample and a difference above threshold is considered to be a defect. The process is repeated multiple times each with a different relative phase shift and each defect location and the difference signals are stored in memory. This data is then used to calculate an amplitude and phase for each defect, which can be used for defect detection and classification.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: July 26, 2011
    Assignee: JZW LLC
    Inventor: Hwan J. Jeong
  • Publication number: 20110075151
    Abstract: Systems and methods for using common-path interferometric imaging for defect detection and classification are described. An illumination source generates and directs coherent light toward the sample. An optical imaging system collects light reflected or transmitted from the sample including a scattered component and a specular component that is predominantly undiffracted by the sample. A variable phase controlling system is used to adjust the relative phase of the scattered component and the specular component so as to change the way they interfere at the image plane. The resultant signal is compared to a reference signal for the same location on the sample and a difference above threshold is considered to be a defect. The process is repeated multiple times each with a different relative phase shift and each defect location and the difference signals are stored in memory. This data is then used to calculate an amplitude and phase for each defect, which can be used for defect detection and classification.
    Type: Application
    Filed: December 2, 2010
    Publication date: March 31, 2011
    Applicant: JZW LLC
    Inventor: Hwan J. JEONG
  • Publication number: 20110075928
    Abstract: High-resolution, common-path interferometric imaging systems and methods are described, wherein a light source generates and directs light toward a sample. An optical imaging system collects the resultant substantially scattered component and substantially unscattered component. A variable phase shifting system is used to adjust the relative phase of the scattered and unscattered light components. The interfered components are sensed by an image sensing system. The process is repeated multiple times with different phase shifts to form corresponding multiple electronic signals representative of raw sample images. The raw sample images are then processed by a signal processor to form a processed image, where each image pixel has an amplitude and a phase. This picture can be displayed directly using some combination of brightness and color to represent amplitude and phase.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 31, 2011
    Inventors: Hwan J. Jeong, David A. Markle
  • Patent number: 7864334
    Abstract: Methods and systems for using common-path interferometry are described. In some embodiments, a common-path interferometry system for the detection of defects in a sample is described. An illumination source generates and directs coherent light toward the sample. An optical imaging system collects light reflected from the sample including a scattered component of that is predominantly scattered by the sample, and a specular component that is predominantly undiffracted by the sample. A variable phase controlling system is used to adjust the relative phase of the scattered component and the specular component so as to improve the ability to detect defects in the sample.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: January 4, 2011
    Assignee: JZW LLC
    Inventor: Hwan J. Jeong
  • Publication number: 20090296096
    Abstract: Methods and systems for using common-path interferometry are described. In some embodiments, a common-path interferometry system for the detection of defects in a sample is described. An illumination source generates and directs coherent light toward the sample. An optical imaging system collects light reflected from the sample including a scattered component of that is predominantly scattered by the sample, and a specular component that is predominantly undiffracted by the sample. A variable phase controlling system is used to adjust the relative phase of the scattered component and the specular component so as to improve the ability to detect defects in the sample.
    Type: Application
    Filed: August 12, 2008
    Publication date: December 3, 2009
    Inventor: Hwan J. JEONG
  • Patent number: 7397557
    Abstract: Serrated Fourier filters and inspection systems are provided. One Fourier filter includes one or more blocking elements configured to block a portion of light from a wafer. The Fourier filter also includes periodic serrations formed on edges of the one or more blocking elements. The periodic serrations define a transition region of the one or more blocking elements. The periodic serrations are configured to vary transmission across the transition region such that variations in the transmission across the transition region are substantially smooth. One inspection system includes a Fourier filter configured as described above and a detector that is configured to detect light transmitted by the Fourier filter. Signals generated by the detector can be used to detect the defects on the wafer.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: July 8, 2008
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Hwan J. Jeong, Andrew V. Hill, Mark S. Wang
  • Patent number: 7199946
    Abstract: Systems configured to provide illumination of a specimen during inspection are provided. One system includes catoptric elements configured to direct light from a light source to a line across the specimen at an oblique angle of incidence. The catoptric elements include positive and negative elements configured such that pupil distortions of the positive and negative elements are substantially canceled. Another system includes a dioptric element and a catoptric element. The dioptric element and the catoptric element are configured to direct light from a light source to a line across the specimen at an oblique angle of incidence. The dioptric and catoptric elements are also configured such that pupil distortions of the dioptric and catoptric elements are substantially canceled.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: April 3, 2007
    Assignee: KLA-Tencor Technologies Corp.
    Inventor: Hwan J. Jeong
  • Patent number: 6907167
    Abstract: An optical interleaver is described, comprising a splitting element for splitting an incident beam into a first optical signal directed along a first path and a second optical signal directed along a second path, a first resonant element positioned along the first path, a second resonant element positioned along the second path, and a combining element positioned to receive and to interferometrically combine the outputs of the first and second resonant to produce the output signal. The optical interleaver may be implemented using a free-space configuration using a beamsplitter and a plurality of resonant cavities such as asymmetric Fabry-Perot resonators or Michelson-Gires-Tournois resonators. In an alternative preferred embodiment, the optical interleaver may be implemented in a Mach-Zender-style configuration using couplers and fiber ring resonators.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: June 14, 2005
    Assignee: Gazillion Bits, Inc.
    Inventors: Hwan J. Jeong, Xing Chen
  • Patent number: 6751373
    Abstract: A WDM demultiplexer/multiplexer comprising a plurality of narrow band reflective filters linearly disposed along an optical axis, each narrow band reflective filter reflecting a single channel or group of channels and transmitting the remaining channels, is described. In a demultiplexing mode, an optical signal initially carrying channels at &lgr;1&lgr;2 . . . &lgr;N travels along the optical axis. Each narrow band reflective filter reflects a distinct channel and is tilted with respect to the optical axis such that it directs the reflected beam away from the optical axis to an output. Each narrow band reflective filter is substantially transparent to the remaining channels of the optical signal, such that the remainder of the optical signal proceeds along the optical axis substantially undisturbed.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: June 15, 2004
    Assignee: Gazillion Bits, Inc.
    Inventor: Hwan J. Jeong
  • Patent number: 6531681
    Abstract: Radiant energy line source(s) (e.g., laser diode array) and anamorphic relay receiving radiant energy therefrom and directing that energy to a substrate in a relatively uniform line image. The line image is scanned with respect to the substrate for treatment thereof. Good uniformity is provided even when the line source is uneven. Optionally, delimiting aperture(s) located in the anamorphic relay focal plane and a subsequent imaging relay are includeable to permit substrate exposure in strips with boundaries between adjacent strips within scribe lines between circuits. An anamorphic relay focal plane mask with a predetermined pattern can be used to define portions of the substrate to be treated with the substrate and mask scanning motions synchronized with each other. Control of source output, and position/speed of the substrate, with respect to the line image, allows uniform dose and required magnitude over the substrate.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: March 11, 2003
    Assignee: Ultratech Stepper, Inc.
    Inventors: David A. Markle, Andrew M. Hawryluk, Hwan J. Jeong