Patents by Inventor Hyung-su Son

Hyung-su Son has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11004754
    Abstract: A laser processing method includes irradiating a laser light into a substrate along a cutting line to form a laser-scribed layer within the substrate, irradiating an X-ray onto a first surface of the substrate along the cutting line, obtaining an image of a diffracted X-ray from the substrate, and determining whether or not the laser-scribed layer is formed along the cutting line, based on analysis of the obtained image of the diffracted X-ray.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: May 11, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin-Yeol Yang, Hyung-Su Son, Hae-Gu Lee, Dong-Su Han
  • Publication number: 20200083124
    Abstract: A laser processing method includes irradiating a laser light into a substrate along a cutting line to form a laser-scribed layer within the substrate, irradiating an X-ray onto a first surface of the substrate along the cutting line, obtaining an image of a diffracted X-ray from the substrate, and determining whether or not the laser-scribed layer is formed along the cutting line, based on analysis of the obtained image of the diffracted X-ray.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 12, 2020
    Inventors: Jin-Yeol YANG, Hyung-Su SON, Hae-Gu LEE, Dong-Su HAN
  • Patent number: 10504804
    Abstract: A laser processing method includes irradiating a laser light into a substrate along a cutting line to form a laser-scribed layer within the substrate, irradiating an X-ray onto a first surface of the substrate along the cutting line, obtaining an image of a diffracted X-ray from the substrate, and determining whether or not the laser-scribed layer is formed along the cutting line, based on analysis of the obtained image of the diffracted X-ray.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: December 10, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin-Yeol Yang, Hyung-Su Son, Hae-Gu Lee, Dong-Su Han
  • Publication number: 20190131193
    Abstract: A laser processing method includes irradiating a laser light into a substrate along a cutting line to form a laser-scribed layer within the substrate, irradiating an X-ray onto a first surface of the substrate along the cutting line, obtaining an image of a diffracted X-ray from the substrate, and determining whether or not the laser-scribed layer is formed along the cutting line, based on analysis of the obtained image of the diffracted X-ray.
    Type: Application
    Filed: July 19, 2018
    Publication date: May 2, 2019
    Inventors: Jin-Yeol YANG, Hyung-Su SON, Hae-Gu LEE, Dong-Su HAN
  • Patent number: 9261532
    Abstract: A conductive atomic force microscope including a plurality of probe structures each including a probe and a cantilever connected thereto, a power supplier applying a bias voltage, a current detector detecting a first current flowing between a sample object and each of the probes and a second current flowing between a measurement object and each of the probes, and calculating representative currents for the sample and measurement objects based on the first and second currents, respectively, and a controller calculating a ratio between representative currents of the sample object measured by each of the probe structures, calculating a scaling factor for scaling the representative current with respect to the measurement object measured by each of the probes, and determine a reproducible current measurement value based on the second measurement current and the scaling factor may be provided.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: February 16, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyun-woo Kim, Woo-seok Ko, Young-hwan Kim, Jeong-hoi Kim, Baek-man Sung, Hyung-su Son, Chae-ho Shin, Yu-sin Yang, Jae-youn Wi, Sang-kil Lee, Chung-sam Jun
  • Publication number: 20160033550
    Abstract: A conductive atomic force microscope including a plurality of probe structures each including a probe and a cantilever connected thereto, a power supplier applying a bias voltage, a current detector detecting a first current flowing between a sample object and each of the probes and a second current flowing between a measurement object and each of the probes, and calculating representative currents for the sample and measurement objects based on the first and second currents, respectively, and a controller calculating a ratio between representative currents of the sample object measured by each of the probe structures, calculating a scaling factor for scaling the representative current with respect to the measurement object measured by each of the probes, and determine a reproducible current measurement value based on the second measurement current and the scaling factor may be provided.
    Type: Application
    Filed: April 23, 2015
    Publication date: February 4, 2016
    Inventors: Hyun-woo KIM, Woo-seok KO, Young-hwan KIM, Jeong-hoi KIM, Baek-man SUNG, Hyung-su SON, Chae-ho SHIN, Yu-sin YANG, Jae-youn WI, Sang-kil LEE, Chung-sam JUN
  • Patent number: 8034641
    Abstract: A method for inspection of defects on a substrate includes positioning a probe of a scanning probe microscopy (SPM) over and spaced apart from a substrate, includes scanning the substrate by changing a relative position of the probe with respect to the substrate on a plane spaced apart from and parallel to the substrate, and includes measuring a value of an induced current generated via the probe in at least two different regions of the substrate. The value of the induced current is variable according to at least a shape and a material of the substrate. The method further includes determining whether a defect exists by comparing the values of the induced currents measured in the at least two different regions of the substrate.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: October 11, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woo-seok Ko, Chung-sam Jun, Hyung-su Son, Yu-sin Yang
  • Publication number: 20110097829
    Abstract: A method for inspection of defects on a substrate includes positioning a probe of a scanning probe microscopy (SPM) over and spaced apart from a substrate, includes scanning the substrate by changing a relative position of the probe with respect to the substrate on a plane spaced apart from and parallel to the substrate, and includes measuring a value of an induced current generated via the probe in at least two different regions of the substrate. The value of the induced current is variable according to at least a shape and a material of the substrate. The method further includes determining whether a defect exists by comparing the values of the induced currents measured in the at least two different regions of the substrate.
    Type: Application
    Filed: October 25, 2010
    Publication date: April 28, 2011
    Inventors: Woo-seok KO, Chung-sam JUN, Hyung-su SON, Yu-sin YANG