Patents by Inventor Hyungdae Bae

Hyungdae Bae has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8966988
    Abstract: Ultra-miniature surface-mountable optical pressure sensor is constructed on an optical fiber. The sensor design utilizes an angled fiber tip which steers the optical axis of the optic fiber by 90°. The optical cavity is formed on the sidewall of the optic fiber. The optical cavity may be covered with a polymer-metal composite diaphragm to operate as a pressure transducer, Alternatively, a polymer-filled cavity may be constructed which does not need a reflective diaphragm. The sensor exhibits a sufficient linearity over the broad pressure range with a high sensitivity. The sensitivity of the sensor may he tuned by controlling the thickness of the diaphragm. Methods of batch production of uniform device-to-device optical pressure sensors of co-axial and cross-axial configurations are presented.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: March 3, 2015
    Assignee: University of Maryland
    Inventors: Miao Yu, Hyungdae Bae, Xuming Zhang
  • Publication number: 20120210797
    Abstract: Ultra-miniature surface-mountable optical pressure sensor is constructed on an optical fiber. The sensor design utilizes an angled fiber tip which steers the optical axis of the optic fiber by 90°. The optical cavity is formed on the sidewall of the optic fiber. The optical cavity may be covered with a polymer-metal composite diaphragm to operate as a pressure transducer. Alternatively, a polymer-filled cavity may be constructed which does not need a reflective diaphragm. The sensor exhibits a sufficient linearity over the broad pressure range with a high sensitivity. The sensitivity of the sensor may be tuned by controlling the thickness of the diaphragm. Methods of batch production of uniform device-to-device optical pressure sensors of co-axial and cross-axial configurations are presented.
    Type: Application
    Filed: April 5, 2012
    Publication date: August 23, 2012
    Applicant: UNIVERSITY OF MARYLAND
    Inventors: Miao YU, Hyungdae BAE, Xuming ZHANG
  • Patent number: 8151648
    Abstract: Ultra-miniature surface-mountable Fabry-Perot pressure sensor is constructed on an optical fiber which utilizes a 45° angled fiber tip covered with a reflective layer which steers the optical axis of the fiber by 90°. The Fabry-Perot cavity is formed on the sidewall of the fiber and a polymer-metal composite diaphragm is formed on the top of the Fabry-Perot cavity to operate as a pressure transducer. The sensor exhibits a sufficient linearity over the broad pressure range with a high sensitivity. The sensitivity of the sensor may be tuned by controlling the thickness of the diaphragm. The sensor may be used in a wide range of applications, including reliable in vivo low invasive pressure measurements of biological fluids, single sensor systems, as well as integral spatial-division-multiplexing sensor networks. Methods of batch production of uniform device-to-device Fabry-Perot pressure sensors of co-axial and cross-axial configurations are presented.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: April 10, 2012
    Assignee: University of Maryland
    Inventors: Miao Yu, Hyungdae Bae, Xuming Zhang
  • Publication number: 20110023617
    Abstract: Ultra-miniature surface-mountable Fabry-Perot pressure sensor is constructed on an optical fiber which utilizes a 45° angled fiber tip covered with a reflective layer which steers the optical axis of the fiber by 90°. The Fabry-Perot cavity is formed on the sidewall of the fiber and a polymer-metal composite diaphragm is formed on the top of the Fabry-Perot cavity to operate as a pressure transducer. The sensor exhibits a sufficient linearity over the broad pressure range with a high sensitivity. The sensitivity of the sensor may be tuned by controlling the thickness of the diaphragm. The sensor may be used in a wide range of applications, including reliable in vivo low invasive pressure measurements of biological fluids, single sensor systems, as well as integral spatial-division-multiplexing sensor networks. Methods of batch production of uniform device-to-device Fabry-Perot pressure sensors of co-axial and cross-axial configurations are presented.
    Type: Application
    Filed: August 3, 2010
    Publication date: February 3, 2011
    Applicant: UNIVERSITY OF MARYLAND
    Inventors: MIAO YU, HYUNGDAE BAE, XUMING ZHANG