Patents by Inventor Hyungrak Kim

Hyungrak Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9496136
    Abstract: A silicon nanoparticle fluid including a) a set of silicon nanoparticles present in an amount of between about 1 wt % and about 20 wt % of the silicon nanoparticie fluid; b) a set of HMW binder molecules present in an amount of between about 0 wt % and about 10 wt % of the silicon nanoparticle fluid; and c) a set of capping agent molecules, such that at least some capping agent molecules are attached to the set of silicon nanoparticles. Preferably, the silicon nanoparticle fluid is a shear thinning fluid.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: November 15, 2016
    Assignee: Innovalight, Inc.
    Inventors: Hyungrak Kim, Malcolm Abbott, Andreas Meisel, Elizabeth Tai, Augustus Jones, Dmitry Poplavskyy, Karel Vanheusden
  • Patent number: 8668848
    Abstract: A composition for the fabrication of reflective features using a direct-write tool is disclosed. The composition comprises metal nanoparticles having an average particle size less than 300 nm and which carry thereon a polymer for substantially preventing agglomeration of the nanoparticles, wherein the nanoparticles exhibit a metal-polymer weight ratio of 100:1 to 10:1. The composition further includes a vehicle for forming a dispersion with the metal nanoparticles. A number of electronic devices comprising a reflective layer formed from the composition are also disclosed. One example case provides an electronic device having a reflective electrode. The reflective electrode comprises a percolation network of the metal nanoparticles embedded in a matrix of the polymer and having an average particle size of less than 300 nm, wherein the reflective electrode is reflective in the visible light range and does not diffract incident light.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: March 11, 2014
    Assignee: Cabot Corporation
    Inventors: Karel Vanheusden, Klaus Kunze, Hyungrak Kim, Aaron D. Stump, Allen B. Schult, Mark J. Hampden-Smith, Chuck Edwards, Anthony R. James, James Caruso, Toivo T. Kodas, Scott Thomas Haubrich, Mark H. Kowalski
  • Patent number: 8597397
    Abstract: Processes for the production of metal nanoparticles. In one aspect, the invention is to a process comprising the steps of mixing a heated first solution comprising a base and/or a reducing agent (e.g., a non-polyol reducing agent), a polyol, and a polymer of vinyl pyrrolidone with a second solution comprising a metal precursor that is capable of being reduced to a metal by the polyol. In another aspect, the invention is to a process that includes the steps of heating a powder of a polymer of vinyl pyrrolidone; forming a first solution comprising the powder and a polyol; and mixing the first solution with a second solution comprising a metal precursor capable of being reduced to a metal by the polyol.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: December 3, 2013
    Assignee: Cabot Corporation
    Inventors: Klaus Kunze, Hyungrak Kim, Allen B. Schult, Nathan E. Stott, Andrew M. Argo
  • Patent number: 8383014
    Abstract: A metal nanoparticle composition for the fabrication of conductive features. The metal nanoparticle composition advantageously has a low viscosity permitting deposition of the composition by direct-write tools. The metal nanoparticle composition advantageously also has a low conversion temperature, permitting its deposition and conversion to an electrical feature on polymeric substrates.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: February 26, 2013
    Assignee: Cabot Corporation
    Inventors: Karel Vanheusden, Klaus Kunze, Hyungrak Kim, Aaron D. Stump, Allen B. Schult, Mark J. Hampden-Smith, Chuck Edwards, Anthony R. James, James Caruso, Toivo T. Kodas, Scott Thomas Haubrich, Mark H. Kowalski
  • Publication number: 20110303885
    Abstract: A metal nanoparticle composition for the fabrication of conductive features. The metal nanoparticle composition advantageously has a low viscosity permitting deposition of the composition by direct-write tools. The metal nanoparticle composition advantageously also has a low conversion temperature, permitting its deposition and conversion to an electrical feature on polymeric substrates.
    Type: Application
    Filed: June 15, 2010
    Publication date: December 15, 2011
    Applicant: Cabot Corporation
    Inventors: Karel Vanheusden, Klaus Kunze, Hyungrak Kim, Aaron D. Stump, Allen B. Schult, Mark J. Hampden-Smith, Chuck Edwards, Anthony R. James, James Caruso, Toivo T. Kodas, Scott Thomas Haubrich, Mark H. Kowalski
  • Patent number: 8058195
    Abstract: The invention is to processes for producing a nanoglass powder batches and to powder batches formed by such processes. In one embodiment, the process comprises the steps of providing a precursor medium comprising a first metal oxide precursor to a first metal oxide, a second metal oxide precursor to a second metal oxide, and a liquid vehicle; and flame spraying the precursor medium under conditions effective to form aggregated nanoglass particles comprising the first and second metal oxides, wherein the aggregated nanoglass particles have an average primary particle size of from 25 nm to 500 nm. The aggregated nanoglass particles preferably have an average aggregate particle size of from 50 nm to 1000 nm and may be amorphous or crystalline.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: November 15, 2011
    Assignee: Cabot Corporation
    Inventors: George Fotou, Mark Hampden-Smith, Mark Kowalski, Hyungrak Kim, Toivo Kodas, Ned Hardman
  • Patent number: 7910393
    Abstract: A Group IV based nanoparticle fluid is disclosed. The nanoparticle fluid includes a set of nanoparticles—comprising a set of Group IV atoms, wherein the set of nanoparticles is present in an amount of between about 1 wt % and about 20 wt % of the nanoparticle fluid. The nanoparticle fluid also includes a set of HMW molecules, wherein the set of HMW molecules is present in an amount of between about 0 wt % and about 5 wt % of the nanoparticle fluid. The nanoparticle fluid further includes a set of capping agent molecules, wherein at least some capping agent molecules of the set of capping agent molecules are attached to the set of nanoparticles.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: March 22, 2011
    Assignee: Innovalight, Inc.
    Inventors: Hyungrak Kim, Malcolm Abbott, Andreas Meisel, Elizabeth Tai, Augustus Jones, Dmitry Poplavskyy, Karel Vanheusden
  • Publication number: 20110012066
    Abstract: A Group IV based nanoparticle fluid is disclosed. The nanoparticle fluid includes a set of nanoparticles-comprising a set of Group IV atoms, wherein the set of nanoparticles is present in an amount of between about 1 wt % and about 20 wt % of the nanoparticle fluid. The nanoparticle fluid also includes a set of HMW molecules, wherein the set of HMW molecules is present in an amount of between about 0 wt % and about 5 wt % of the nanoparticle fluid. The nanoparticle fluid further includes a set of capping agent molecules, wherein at least some capping agent molecules of the set of capping agent molecules are attached to the set of nanoparticles.
    Type: Application
    Filed: September 24, 2010
    Publication date: January 20, 2011
    Inventors: Hyungrak Kim, Malcolm Abbott, Andreas Meisel, Elizabeth Tai, Augustus Jones, Dmitry Poplavskyy, Karel Vanheusden
  • Patent number: 7824466
    Abstract: Processes for the production of metal nanoparticles. In one aspect, the invention is to a process comprising the steps of mixing a heated first solution comprising a base and/or a reducing agent (e.g., a non-polyol reducing agent), a polyol, and a polymer of vinyl pyrrolidone with a second solution comprising a metal precursor that is capable of being reduced to a metal by the polyol. In another aspect, the invention is to a process that includes the steps of heating a powder of a polymer of vinyl pyrrolidone; forming a first solution comprising the powder and a polyol; and mixing the first solution with a second solution comprising a metal precursor capable of being reduced to a metal by the polyol.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: November 2, 2010
    Assignee: Cabot Corporation
    Inventors: Karel Vanheusden, Klaus Kunze, Hyungrak Kim, Aaron D. Stump, Allen B. Schult, Mark J. Hampden-Smith, Chuck Edwards, Anthony R. James, James Caruso, Toivo T. Kodas, Scott T. Haubrich, Mark H. Kowalski, Nathan E. Stott
  • Publication number: 20100269635
    Abstract: Processes for the production of metal nanoparticles. In one aspect, the invention is to a process comprising the steps of mixing a heated first solution comprising a base and/or a reducing agent (e.g., a non-polyol reducing agent), a polyol, and a polymer of vinyl pyrrolidone with a second solution comprising a metal precursor that is capable of being reduced to a metal by the polyol. In another aspect, the invention is to a process that includes the steps of heating a powder of a polymer of vinyl pyrrolidone; forming a first solution comprising the powder and a polyol; and mixing the first solution with a second solution comprising a metal precursor capable of being reduced to a metal by the polyol.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 28, 2010
    Applicant: CABOT CORPORATION
    Inventors: Karel VANHEUSDEN, Klaus KUNZE, Hyungrak KIM, Aaron D. STUMP, Allen B. Schult, Mark J. Hampden-Smith, Chuck EDWARDS, Anthony R. JAMES, James CARUSO, Toivo T. KODAS, Scott T. HAUBRICH, Mark H. KOWALSKI, Nathan E. STOTT
  • Publication number: 20100269634
    Abstract: A process for the production of metal nanoparticles. The process comprises a rapid mixing of a solution of at least about 0.1 mole of a metal compound that is capable of being reduced to a metal by a polyol with a heated solution of a polyol and a substance that is capable of being adsorbed on the nanoparticles.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 28, 2010
    Applicant: CABOT CORPORATION
    Inventors: Karel Vanheusden, Klaus Kunze, Hyungrak Kim, Aaron D. Stump, Allen B. Schult, Mark J. Hampden-Smith, Chuck Edwards, Anthony R. James, James Caruso, Toivo T. Kodas, Scott Thomas Haubrich, Mark H. Kowalski
  • Patent number: 7741120
    Abstract: Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: June 22, 2010
    Assignee: Los Alamos National Security, LLC
    Inventors: Victor I. Klimov, Jennifer A. Hollingsworth, Scott A. Crooker, Hyungrak Kim
  • Publication number: 20100136771
    Abstract: A Group IV based nanoparticle fluid is disclosed. The nanoparticle fluid includes a set of nanoparticles—comprising a set of Group IV atoms, wherein the set of nanoparticles is present in an amount of between about 1 wt % and about 20 wt % of the nanoparticle fluid. The nanoparticle fluid also includes a set of HMW molecules, wherein the set of HMW molecules is present in an amount of between about 0 wt % and about 5 wt % of the nanoparticle fluid. The nanoparticle fluid further includes a set of capping agent molecules, wherein at least some capping agent molecules of the set of capping agent molecules are attached to the set of nanoparticles.
    Type: Application
    Filed: June 29, 2009
    Publication date: June 3, 2010
    Inventors: Hyungrak Kim, Malcolm Abbott, Andreas Meisel, Elizabeth Tai, Augustus Jones, Dmitry Poplavskyy, Karel Vanheusden
  • Patent number: 7683846
    Abstract: An ultra wide band receiver system comprising a ultra wide band antenna and an active circuit. The ultra wide band antenna including a power feed operable to receive electromagnetic energy. The ultra wide band antenna further includes a radiator operable to be excited by the electromagnetic energy fed through the power feed to radiate an electromagnetic wave. The radiator has a metal layer. The active circuit includes a pair of parallel coupled lines arranged on a first side of the radiator. The pair of parallel coupled lines is operable to block DC current. The active circuit further includes at least one defected ground structure formed on a second side of the radiator. The defected ground structure is formed on an etched out part of the metal layer.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: March 23, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ick-Jae Yoon, SeongSoo Lee, Young Joong Yoon, Young-Hwan Kim, Young-Eil Kim, Hyungrak Kim
  • Patent number: 7625637
    Abstract: Metallic nanoparticles and processes for forming metallic nanoparticles. In one aspect, the invention is to a process for forming nanoparticles comprising the step of heating a solution comprising a first metal precursor and a nucleating agent (e.g., nucleate nanoparticles or a nucleate precursor) in the presence of a base under conditions effective to form the nanoparticles. The first metal precursor preferably comprises a cationic metal species having a low reduction potential. The invention is also to a nanoparticle or plurality of nanoparticles, each nanoparticle comprising a core having a largest dimension less than about 10 nm; and a metal layer substantially surrounding the core and having a largest dimension less than about 200 nm.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: December 1, 2009
    Assignee: Cabot Corporation
    Inventor: Hyungrak Kim
  • Patent number: 7504913
    Abstract: A DC block with a band-notch characteristic using a defected ground structure (DGS), includes a pair of coupled lines for being formed parallel to each other on one surface of a dielectric and blocking a flow of a DC, and at least one DGS for being formed on an area of the rear surface of the dielectric corresponding to each coupled line and comprising an etched region formed by etching a part of a ground surface bonded to the dielectric and a metal region formed in the etched region. Accordingly, the stop band of the desired bandwidth in the desired communications band can be formed and the size of the communications system can be reduced.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: March 17, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ick-Jae Yoon, SeongSoo Lee, Young Joong Yoon, Young-Hwan Kim, Young-Eil Kim, Hyungrak Kim
  • Publication number: 20080318757
    Abstract: The invention is to processes for producing a nanoglass powder batches and to powder batches formed by such processes. In one embodiment, the process comprises the steps of providing a precursor medium comprising a first metal oxide precursor to a first metal oxide, a second metal oxide precursor to a second metal oxide, and a liquid vehicle; and flame spraying the precursor medium under conditions effective to form aggregated nanoglass particles comprising the first and second metal oxides, wherein the aggregated nanoglass particles have an average primary particle size of from 25 nm to 500 nm. The aggregated nanoglass particles preferably have an average aggregate particle size of from 50 nm to 1000 nm and may be amorphous or crystalline.
    Type: Application
    Filed: June 19, 2008
    Publication date: December 25, 2008
    Applicant: CABOT CORPORATION
    Inventors: George FOTOU, Mark HAMPDEN-SMITH, Mark KOWALSKI, Hyungrak KIM, Toivo KODAS, Ned HARDMAN
  • Publication number: 20080145633
    Abstract: Photovoltaic conductive features and processes for forming photovoltaic conductive features are described. The process comprises (a) depositing a composition onto at least a portion of a substrate, wherein the composition comprises metal-containing particles having a primary particle size of from about 10 nanometers to less than 500 nanometers and including a continuous or non-continuous coating of a ceramic material; and (b) heating the composition such that the precursor composition forms at least a portion of a photovoltaic conductive feature. The metal-containing particles are preferably produced by flame spraying.
    Type: Application
    Filed: June 19, 2007
    Publication date: June 19, 2008
    Applicant: Cabot Corporation
    Inventors: Toivo T. Kodas, Miodrag Oljaca, Mark J. Hampden-Smith, George P. Fotou, Mark H. Kowalski, Hyungrak Kim
  • Publication number: 20080050828
    Abstract: Multifunctional nanocomposites are provided including a core of either a magnetic material or an inorganic semiconductor, and, a shell of either a magnetic material or an inorganic semiconductor, wherein the core and the shell are of differing materials, such multifunctional nanocomposites having multifunctional properties including magnetic properties from the magnetic material and optical properties from the inorganic semiconductor material. Various applications of such multifunctional nanocomposites are also provided.
    Type: Application
    Filed: August 28, 2007
    Publication date: February 28, 2008
    Inventors: Victor Klimov, Jennifer Hollingsworth, Scott Crooker, Hyungrak Kim
  • Publication number: 20080034921
    Abstract: Processes for the production of metal nanoparticles. In one aspect, the invention is to a process comprising the steps of mixing a heated first solution comprising a base and/or a reducing agent (e.g., a non-polyol reducing agent), a polyol, and a polymer of vinyl pyrrolidone with a second solution comprising a metal precursor that is capable of being reduced to a metal by the polyol. In another aspect, the invention is to a process that includes the steps of heating a powder of a polymer of vinyl pyrrolidone; forming a first solution comprising the powder and a polyol; and mixing the first solution with a second solution comprising a metal precursor capable of being reduced to a metal by the polyol.
    Type: Application
    Filed: May 30, 2007
    Publication date: February 14, 2008
    Applicant: Cabot Corporation
    Inventors: Karel Vanheusden, Klaus Kunze, Hyungrak Kim, Aaron Stump, Allen Schult, Mark Hampden-Smith, Chuck Edwards, Anthony James, James Caruso, Toivo Kodas, Scott Haubrich, Mark Kowalski, Nathan Stott